Satisfiability modulo theories
Verifying cyberphysical systems

Sayan Mitra

mitras@illinois.edu

Some of the slides and examples for this lecture are from Clark Barrett

mailto:mitras@illinois.edu

Today

e Satisfiability modulo theories (SMT)
* Theories, models, decision procedures
* Uninterpreted Functions
» Difference Logic

* Brief z3 tutorial (see notebook)

Satisfiability modulo theories

e SAT: Given a well-formed formula in propositional logic, determine
whether there exists a satisfying solution

* A satisfiability modulo theory (SMT) problem is a generalization of SAT
in which some of the binary variables are replaced by predicates over a
suitable set of non-binary variables

s p1(w,x,y,2):= (x—y =5)AZz—-y=22)AN(z—x>2)A(w —x = 2)

o ¢(x,v,2):= Bx?>—4y+5z< 5)A (=2x + 523 < 7)

* ¢4 is a predicate in difference logic in which the variables are real-valued, and the clauses are
constructed with standard comparison operations >, >=, =5 and —(minus)

* ¢, is a predicate in real arithmetic

Architecture of an SMT solver

Theory solvers/decision
procedures

Arithmetic
Bitvectors

Difference logic

Uninterpreted
functions

CNF formula in
real arithmetic

boolean
skeleton of
problem

Core

solution or
counterexample

assertions

DPLL

(model theory)

A short overview of theories, models, decision procedures

What is a theory in mathematical logic?

* When we talk about well-formed formulas with non-binary variables,
we have to say exactly what type of formulas are allowed

e and, what it means for assignments to satisfy such formulas

* This brings us to some basic notions in mathematical logic

* theory --- what does a well-formed formula look like ?
* models --- what does it mean to satisfy a formula?

Building up a theory

v !
First, we define the syntax for writing formulas « 2= {0,+}, Zp = {<}
A signature ¥ = (Zg, Zp, V) e arity(0) =0
e X :setof function | . arity(+) = 2
symbols,e.g.,{+,—, f,g,sin, ...}
* Xp :set of predicate symbols * arity(<) =2
* arity of each function: arity: Xz - N V ={x,y,z}

e O arity functions are constants

* V:setotvariables Terms defined by this signature are
Terms(Z,V) x,,2,+(%,), +(+(x,y), 0),0,

* Elements of V are terms N~ ~——

* Ifty, ...ty € Terms(Z,V) and f € Xy with arity k,
then f(tq, ..., ty) € Terms(Z,V)

* Ground terms are terms without variables

Terms to Formulas

Atomic formulas AF e x<Yy

* True, False * +(x'y) = +(y’ x)
o Ifty,...,tx € Terms(Z, V) and p € Zp with arity k, then p(¢t4, ..., tx) € AF(Z,V)

* Aliteral is an AF or its negation

» Set of all atomic formulas AF (%, V) '\\j;_(\fi_y) =,_9. x>y
Quantifier free formulas QFF (X, V)

e AF * Vx,3y: :I—(x,y) =0)

* if ¢1, ¢, € QFF then e Vx,dy:x <y

* ¢, € QFF, ¢y NP, € QFF, ¢, V ¢, € QFF, b, - ¢, € QFF

* Vx,3y:+(x,y) = x
* Set of all quantifier free formulas QFF (X, V)

First order formulas is the set of quantifier free formulas under universal and \
S o « Axi+(x,0) =x £&—
existential quantifiers

* Bound variables are those that are attached to quantifiers

* Free varigables: variables not bound
Sentence: First order formula with no free variables

i b
Theory(Z, V) set of all sentences over (%, V)

Models for theories

This notion of model from mathematical logic is not to be confused with the notion of a
model for a computational or physical process

* A model gives meanings or interpretations to formulas in theory T

* Amodel M for T = Theory(Z, V) has to define
e A dor—n—ain IM|
interpretations of all functions and predicate symbols
M(f): IM|™ - |M| if arity(f) = n
M(";;) C |M|"ifarity(p) =n
Assignment M (x) € |M| for every variable x € V

 Aformula ¢ is true in M if it evaluates to true under the given interpretations over
domain M

Example

A model gives meanings or interpretations to formulas in theory T

v oL}
Example model for £ = {0, +, <}
|M| ={a,b,c}

M(0) =a

M(<) = {{a, b),(a, c), (b, c)}

M(+)| a b b
a a b
b b C a
C C a b

ifM(x)=a,M(y)=0»b

then M (+(x, y)) is M) (MG, M) =
M(+)(a,b) =D

M(+(+(x,y),y) =c¢
MEeEVx3y+(x,y) =x

We say that the model M T-satisfies the formula ¢

Decision procedures

Given a theory T a theory solver or a decision procedure for T takes as

input a set of literals ¢ (atomic propositions) and determines whether
¢ is T-satisfiable, that is,

1 a model M such that M E ¢?

(\model theory)

A short overview of theories and models in mathematical logic

Example theories

* Linear arithmetic
. 4x—3y+6zf_l(lx+y—z< 1;

e Real arithmetic (nonlinear)
* 4x2 +6y—9z3<5

* Bit vectors

* Arrays
e x'[i] = x[i] +1

 Uninterpreted functions (UF) Zz: = {f, g, ...}, Zp: = {=}, V:= {x;}
* X1 =X AN x3Fx; A f(xz) # f(xz)

e Difference logic 2p: = {1,2,..,— },2p: = {<, <, =, >, =}
* x; — x, 2 k, where 2€ {<, <, =, >, >}

Uninterpreted functions

Useful for abstractly reasoning about programs
¢ ZF: — {f,g, }, Zp: — {:}, V: — {xl}
Literals are of the formx; = x, A X3 £x, A f(x3) # f(x,)

Decision procedure for Uninterpreted functions (UF)

$=x13 =x3AN(x2 =%x3) N(xg4 =%x5) N(xs #x1) A (F(xq) # F(x3))

Decision procedure

1.
2.
3.

Put all variables and function instances in their own classes
If t; = t, is a literal then merge the classes containing them; do this repeatedly

If t; and t, are terms in the same class then merge classes containing F(t;) and
F(t,); repeat

If t; # t, is a literal in ¢ and they belong to the same class then return unsat else
return sat t; and t,

Decision procedure for Uninterpreted functions (UF)

Initial classes @ = x; = x, A (X = x3) A(xg =x5) A(xs £x) A (F(xy) #

F(x3))
Classes {x1} {x; Hxg Hxa Hos HF (g)HF (x3)}

{x1, %2, x3} {x4, x5 HF (1) HF (x3)}

{Xl,xz,X3} {X4, x5}{F(x1),F(x3)}

Unsat

Difference Logic (conjunctive fragment)

A useful fragment of linear arithmetic

ZF:: {1,2,..,_}

Z:P: — {<; S) =) #:; >; 2}

Literals are of the form x; — x, 2 k, where 2€ {<, <, =, >, >}

X1, X, are Integers or rational variables

Example:p = (x —y=5AZ —y=22)AN(Z —x>2)AN(W—x =
2)N (z —w<0)

Satisfiability is checking whether this formula is consistent

An Application: Job shop scheduling problem

Given a finite set of n jobs. Each job i of which consists of a chain of

operations (ml, dl) (mz, dz) . There is a finite set of m machines M =
{m,,m,, ..., m,,}, each of which can handle at most one operation at a
time.

The problem of finding a shortest schedule---allocation of machine
time to jobs---can be formulated in DL.

Decision procedure for Difference logic

b= (x—y=5ANZ—-y=22))A(z—x>2)ANW—-—x=2)A (z —w<0)
Decision procedure:

Convert each literal (AF) to x; — x5, < ¢ form:

¢’ = (x—y<5A(y—x<=<-5)
ANy—z<-2)A
(x —z<-3)A
WwW—x<2)A(x —w < =2)
(z —w< 1)

For integer domain (x; — x, < k) isreplaced by (x; —x, <k —1)
How to check satisfiability or consistency of formula ¢'?

¢'= (x—y<5A({—x<=<-5)
ANy—z<-2)A
(x —z<-3)A
wW—x<2)A(x —w < =2)
(z —w < —1)

Construct a graph with edge from x —¢ y for each literal x — y < cin ¢’

¢'= (x—y<5A({—x<=<-5)
ANy—z<-2)A
(x —z<-3)A
W—x<2)A(x —w < =2)
(z —w< —1)

Construct a graph G4, with edge from x —¢ y for each literal ¢’

Proposition. ¢ is satisfiable iff Gy, is negative

cycle free.

Proof. (<=) If there is a negative cycle then

x—z<-3);z—w<<-1);(w—x < 2)
adding all up: (0 < —2) which is inconsistent.

o(x) = —dist(o,x) =5

o(y) = —dist(o,y) =0
o(z) = —dist(o,z) = 8

Proposition. ¢ is satisfiable iff Gy, is negative cycle free.

Proof. (<=) If there is a negative cycle then
(x—z<-3);(z—w < —-1); (w—x < 2) adding all up:
(0 < —2) which is inconsistent.

(=>) Let us assume that there is no negative cycle. We will
construct a satisfying solution o:V — Z

Consider additional vertex o with 0 =° v edges for all v

For each variable x, define solution a(x) = —dist(o, x) [possible
because there is no negative cycle]

Suppose FSOC, g does not satisfy a literal x — y < k then
—dist(o,x) + dist(o,y) > k

dist(o,y) > k + dist(o, x)

dist(o,y) > dist(x,y) + dist(o, x)

violates definition of dist(o, y)!

Summary of DP for Difference Logic

e Satisfiability check for conjunctive fragment of DL can be performed
using Bellman-Ford algorithm in time O(|V].|E]|)

* Inconsistency/unsatisfiability explanations are negative cycles

e Amenable to incremental checks

d=gl@=crf(g@)=flc)vgla)=drc=d

Several approaches, lazy approach:

* Abstract ¢ to propositional form
 Feed to DPLL

* Use theory decision procedure to refine propositional formula a guide SAT

Return to SMT

Theory solvers/decision

procedures
) literals/formula in boolean
Arithmetic e real arithmetic skeleton of
problem
Bitvectors
Difference logic Core -
Uninterpreted .
fUﬂCtiOﬂS assertions
solution or

counterexample

¢Eg(a)=C/\f(g(a))if(c)Vg(a)=d/\c¢d

1 2 3 4
send {1,2 v3, 4 }to DPLL

returns model {1, 2, 4}

Theory solvers/decision

procedures
literals/formula in boolean
Arithmetic real arithmetic skeleton of
- problem

Bitvectors

Difference

Uninterprete
d functions

’
/
I
’
’ /
’ ’
/ .
’ ’
i i

Core

DPLL

solution or

counterexample

UF solver concretizes to g(a) = ¢, f(g(a)) * f(c),c+d

checks this as UNSAT
send{1,2v3, 4,1v2v4}toDPLL
returns model {1, 2, 3, 4}

asserti
ons

UF solver concretizes and finds this to be UNSAT
send{1,2 v3, 4,1v2Vv4,1v2v3v 4}toDPLL
returns UNSAT

Assignments

* Learn z3
* https://ericpony.github.io/z3py-tutorial/guide-examples.htm

Readings
* Read chapter 4 for next week
e Reading more about decision procedures

Dandel Kroening
Ofex Strichman

Decision
Procedures

Second Edition

https://ericpony.github.io/z3py-tutorial/guide-examples.htm

