
Satisfiability modulo theories
Verifying cyberphysical systems

Sayan Mitra
mitras@illinois.edu

Some of the slides and examples for this lecture are from Clark Barrett

mailto:mitras@illinois.edu

Today

• Satisfiability modulo theories (SMT)
• Theories, models, decision procedures
• Uninterpreted Functions
• Difference Logic

• Brief z3 tutorial (see notebook)

Satisfiability modulo theories

• SAT: Given a well-formed formula in propositional logic, determine
whether there exists a satisfying solution
• A satisfiability modulo theory (SMT) problem is a generalization of SAT

in which some of the binary variables are replaced by predicates over a
suitable set of non-binary variables

• 𝜙! 𝑤, 𝑥, 𝑦, 𝑧 : = 𝑥 − 𝑦 = 5 ∧ 𝑧 − 𝑦 ≥ 2 ∧ 𝑧 − 𝑥 > 2 ∧ (𝑤 − 𝑥 = 2)
• 𝜙" 𝑥, 𝑦, 𝑧 : = 3𝑥" − 4𝑦 + 5𝑧 ≤ 5 ∧ (−2𝑥 + 5𝑧# ≤ 7)
• 𝜙! is a predicate in difference logic in which the variables are real-valued, and the clauses are

constructed with standard comparison operations >, >=, =$ and –(minus)

• 𝜙" is a predicate in real arithmetic

Theory solvers/decision
procedures

Arithmetic
Bitvectors

DPLL Difference logic
…

Uninterpreted
functions

Core

CNF formula in
real arithmetic

solution or
counterexample

boolean
skeleton of

problem

assertions

Architecture of an SMT solver

⟨𝑚𝑜𝑑𝑒𝑙 𝑡ℎ𝑒𝑜𝑟𝑦⟩
A short overview of theories, models, decision procedures

What is a theory in mathematical logic?

• When we talk about well-formed formulas with non-binary variables,
we have to say exactly what type of formulas are allowed
• and, what it means for assignments to satisfy such formulas
• This brings us to some basic notions in mathematical logic
• theory --- what does a well-formed formula look like ?
• models --- what does it mean to satisfy a formula?

Building up a theory
First, we define the syntax for writing formulas

A signature Σ = (Σ! , Σ", 𝑉)
• Σ! ∶ set of function

symbols, 𝑒. 𝑔. , +, −, 𝑓, 𝑔, 𝑠𝑖𝑛, …
• Σ" : set of predicate symbols

• arity of each function: 𝑎𝑟𝑖𝑡𝑦: Σ! → ℕ
• 0 arity functions are constants

• 𝑉: set of variables
𝑇𝑒𝑟𝑚𝑠 Σ, 𝑉

• Elements of 𝑉 are terms
• If 𝑡", … , 𝑡# ∈ 𝑇𝑒𝑟𝑚𝑠 Σ, 𝑉 and 𝑓 ∈ Σ! with arity k,

then 𝑓 𝑡", … , 𝑡# ∈ 𝑇𝑒𝑟𝑚𝑠(Σ, 𝑉)
• Ground terms are terms without variables

• Σ! = 0,+ , Σ" = <

• 𝑎𝑟𝑖𝑡𝑦 0 = 0

• 𝑎𝑟𝑖𝑡𝑦 + = 2

• 𝑎𝑟𝑖𝑡𝑦 < = 2

• 𝑉 = {𝑥, 𝑦, 𝑧}

• Terms defined by this signature are
𝑥, 𝑦, 𝑧, + 𝑥, 𝑦 , + + 𝑥, 𝑦 , 0 , 0, …

Terms to Formulas
• Atomic formulas 𝐴𝐹

• True, False
• If 𝑡!, … , 𝑡" ∈ 𝑇𝑒𝑟𝑚𝑠 Σ, 𝑉 and p ∈ Σ# with arity k, then p 𝑡!, … , 𝑡" ∈ 𝐴𝐹(Σ, 𝑉)
• A literal is an AF or its negation
• Set of all atomic formulas 𝐴𝐹 Σ, 𝑉

• Quantifier free formulas 𝑄𝐹𝐹 Σ, 𝑉
• 𝐴𝐹

• if 𝜙!, 𝜙$ ∈ 𝑄𝐹𝐹 then
• ¬𝜙! ∈ 𝑄𝐹𝐹,𝜙! ∧ 𝜙" ∈ 𝑄𝐹𝐹,𝜙! ∨ 𝜙" ∈ 𝑄𝐹𝐹,𝜙! → 𝜙" ∈ 𝑄𝐹𝐹

• Set of all quantifier free formulas 𝑄𝐹𝐹 Σ, 𝑉

• First order formulas is the set of quantifier free formulas under universal and
existential quantifiers
• Bound variables are those that are attached to quantifiers
• Free variables: variables not bound

• Sentence: First order formula with no free variables

• Theory Σ, 𝑉 set of all sentences over Σ, 𝑉

• 𝑥 < 𝑦
• + 𝑥, 𝑦 = +(𝑦, 𝑥)

• + 𝑥, 𝑦 = 0 ∧ 𝑥 > 𝑦

• ∀𝑥, ∃𝑦:+ 𝑥, 𝑦 = 0
• ∀𝑥, ∃𝑦: 𝑥 < 𝑦
• ∀𝑥, ∃𝑦:+ 𝑥, 𝑦 = 𝑥

• ∃𝑥:+ 𝑥, 𝑐 = 𝑥

Models for theories
This notion of model from mathematical logic is not to be confused with the notion of a
model for a computational or physical process

• A model gives meanings or interpretations to formulas in theory 𝑇

• A model 𝑀 for T = Theory(Σ, 𝑉) has to define
• A domain |M|
• interpretations of all functions and predicate symbols
• 𝑀 𝑓 : 𝑀 # → |𝑀| if arity 𝑓 = 𝑛
• 𝑀 𝑝 ⊆ 𝑀 # if 𝑎𝑟𝑖𝑡𝑦 𝑝 = 𝑛
• Assignment 𝑀 𝑥 ∈ |𝑀| for every variable 𝑥 ∈ 𝑉

• A formula 𝜙 is true in 𝑀 if it evaluates to true under the given interpretations over
domain 𝑀

Example

Example model for Σ = {0,+,<}
𝑀 = 𝑎, 𝑏, 𝑐
𝑀 0 = 𝑎
𝑀 < = { 𝑎, 𝑏 , 𝑎, 𝑐 , ⟨𝑏, 𝑐⟩}

𝑀 + 𝑎 𝑏 𝑏
𝑎 𝑎 𝑏 𝑐
𝑏 𝑏 𝑐 𝑎
𝑐 𝑐 𝑎 𝑏

if 𝑀 𝑥 = 𝑎,𝑀 𝑦 = 𝑏

then 𝑀 +(𝑥, 𝑦) is 𝑀 + 𝑀 𝑥 ,𝑀 𝑦 =
𝑀 + 𝑎, 𝑏 = 𝑏
𝑀(+ + 𝑥, 𝑦 , 𝑦 = 𝑐
𝑀 ⊨ ∀𝑥 ∃𝑦 + 𝑥, 𝑦 = 𝑥

We say that the model 𝑀 T-satisfies the formula 𝜙

A model gives meanings or interpretations to formulas in theory 𝑇

Decision procedures

Given a theory 𝑇 a theory solver or a decision procedure for 𝑇 takes as
input a set of literals 𝜙 (atomic propositions) and determines whether
𝜙 is 𝑇-satisfiable, that is,
∃ a model 𝑀 such that 𝑀 ⊨ 𝜙?

⟨\model 𝑡ℎ𝑒𝑜𝑟𝑦⟩
A short overview of theories and models in mathematical logic

Example theories
• Linear arithmetic
• 4𝑥 − 3𝑦 + 6𝑧 ≤ 10, 𝑥 + 𝑦 − 𝑧 ≤ 1;

• Real arithmetic (nonlinear)
• 4𝑥- + 6𝑦 − 9𝑧. ≤ 5

• Bit vectors
• Arrays
• 𝑥/ 𝑖 = 𝑥 𝑖 + 1

• Uninterpreted functions (UF) Σ;: = 𝑓, 𝑔, … , Σ<: = = , 𝑉:= 𝑥=
• 𝑥0 = 𝑥- ∧ 𝑥. ≠ 𝑥- ∧ 𝑓 𝑥. ≠ 𝑓(𝑥-)

• Difference logic Σ;: = 1,2, . . , − , Σ<: = <,≤,=,>,≥
• 𝑥0 − 𝑥- ≷ 𝑘, where ≷∈ <,≤,=,>,≥

Uninterpreted functions

Useful for abstractly reasoning about programs
• Σ;: = 𝑓, 𝑔, … , Σ<: = = , 𝑉:= 𝑥=
Literals are of the form 𝑥> = 𝑥? ∧ 𝑥@ ≠ 𝑥? ∧ 𝑓 𝑥@ ≠ 𝑓(𝑥?)

Decision procedure for Uninterpreted functions (UF)

𝜙 = 𝑥0 = 𝑥- ∧ (𝑥- = 𝑥.) ∧ (𝑥1 = 𝑥2) ∧ 𝑥2 ≠ 𝑥0 ∧ (𝐹 𝑥0 ≠ 𝐹 𝑥.)

Decision procedure

1. Put all variables and function instances in their own classes

2. If 𝑡0 = 𝑡- is a literal then merge the classes containing them; do this repeatedly
3. If 𝑡0 and 𝑡- are terms in the same class then merge classes containing 𝐹 𝑡0 and

𝐹(𝑡-); repeat

4. If 𝑡0 ≠ 𝑡- is a literal in 𝜙 and they belong to the same class then return unsat else
return sat 𝑡0 and 𝑡-

Decision procedure for Uninterpreted functions (UF)

Initial classes 𝜙 = 𝑥5 = 𝑥6 ∧ (𝑥6 = 𝑥7) ∧ (𝑥8 = 𝑥9) ∧ 𝑥9 ≠ 𝑥5 ∧ (𝐹 𝑥5 ≠
𝐹 𝑥7)

Classes {𝑥5} 𝑥6 𝑥7 𝑥8 𝑥9 𝐹 𝑥5 𝐹 𝑥7

{𝑥5, 𝑥6, 𝑥7} 𝑥8, 𝑥9 𝐹 𝑥5 𝐹 𝑥7

{𝑥5, 𝑥6, 𝑥7} 𝑥8, 𝑥9 𝐹 𝑥5 , 𝐹(𝑥7)

Unsat

Difference Logic (conjunctive fragment)

A useful fragment of linear arithmetic
Σ;: = 1,2, . . , −
Σ<: = <,≤,=,≠,>,≥
Literals are of the form 𝑥> − 𝑥? ≷ 𝑘, where ≷∈ <,≤,=,>,≥
𝑥>, 𝑥? are Integers or rational variables

Example: 𝜙 = (𝑥 − 𝑦 = 5) ∧ (𝑧 − 𝑦 ≥ 2) ∧ (𝑧 − 𝑥 > 2) ∧ (𝑤 − 𝑥 =
2) ∧ (𝑧 − 𝑤 < 0)
Satisfiability is checking whether this formula is consistent

An Application: Job shop scheduling problem

Given a finite set of n jobs. Each job i of which consists of a chain of
operations (𝑚>

= , 𝑑>=), (𝑚?
= , 𝑑?=),... There is a finite set of m machines 𝑀 =

{𝑚>, 𝑚?, … ,𝑚A}, each of which can handle at most one operation at a
time.
The problem of finding a shortest schedule---allocation of machine
time to jobs---can be formulated in DL.

Decision procedure for Difference logic
𝜙 = (𝑥 − 𝑦 = 5) ∧ (𝑧 − 𝑦 ≥ 2) ∧ (𝑧 − 𝑥 > 2) ∧ (𝑤 − 𝑥 = 2) ∧ (𝑧 − 𝑤 < 0)

Decision procedure:
Convert each literal (AF) to 𝑥5 − 𝑥6 ≤ 𝑐 form:

𝜙: = 𝑥 − 𝑦 ≤ 5 ∧ (𝑦 − 𝑥 ≤ −5)
∧ 𝑦 − 𝑧 ≤ −2 ∧
𝑥 − 𝑧 ≤ −3 ∧

𝑤 − 𝑥 ≤ 2 ∧ (𝑥 − 𝑤 ≤ −2)
(𝑧 − 𝑤 ≤ −1)

For integer domain 𝑥5 − 𝑥6 < 𝑘 is replaced by 𝑥5 − 𝑥6 < 𝑘 − 1
How to check satisfiability or consistency of formula 𝜙:?

Construct a graph with edge from 𝑥 →; 𝑦 for each literal 𝑥 − 𝑦 ≤ 𝑐 in 𝜙′

𝜙/ = 𝑥 − 𝑦 ≤ 5 ∧ (𝑦 − 𝑥 ≤ −5)
∧ 𝑦 − 𝑧 ≤ −2 ∧
𝑥 − 𝑧 ≤ −3 ∧

𝑤 − 𝑥 ≤ 2 ∧ (𝑥 − 𝑤 ≤ −2)
(𝑧 − 𝑤 ≤ −1)

𝑥

𝑦

𝑧

𝑤

5

−5

−2

−3

2

−2

−1

Construct a graph 𝐺BC with edge from 𝑥 →D 𝑦 for each literal 𝜙′

𝜙/ = 𝑥 − 𝑦 ≤ 5 ∧ (𝑦 − 𝑥 ≤ −5)
∧ 𝑦 − 𝑧 ≤ −2 ∧
𝑥 − 𝑧 ≤ −3 ∧

𝑤 − 𝑥 ≤ 2 ∧ (𝑥 − 𝑤 ≤ −2)
(𝑧 − 𝑤 ≤ −1)

𝑥

𝑦

𝑧

𝑤

5

−5

−2

−3

2

−2

−1

Proposition. 𝜙 is satisfiable iff G8/ is negative
cycle free.

Proof. (<=) If there is a negative cycle then

𝑥 − 𝑧 ≤ −3 ; 𝑧 − 𝑤 ≤ −1 ; (𝑤 − 𝑥 ≤ 2)
adding all up: 0 ≤ −2 which is inconsistent.

𝑧𝑥

𝑦

𝑤

5

−5

−2

−3

2
−2

−1

Proposition. 𝜙 is satisfiable iff G8/ is negative cycle free.

Proof. (<=) If there is a negative cycle then

𝑥 − 𝑧 ≤ −3 ; 𝑧 − 𝑤 ≤ −1 ; (𝑤 − 𝑥 ≤ 2) adding all up:
0 ≤ −2 which is inconsistent.

(=>) Let us assume that there is no negative cycle. We will
construct a satisfying solution 𝜎: 𝑉 → ℤ
Consider additional vertex 𝑜 with 𝑜 →9 𝑣 edges for all 𝑣
For each variable 𝑥, define solution 𝜎 𝑥 = −𝑑𝑖𝑠𝑡(𝑜, 𝑥) [possible
because there is no negative cycle]

Suppose FSOC, 𝜎 does not satisfy a literal 𝑥 − 𝑦 ≤ 𝑘 then
−𝑑𝑖𝑠𝑡 𝑜, 𝑥 + 𝑑𝑖𝑠𝑡 𝑜, 𝑦 > 𝑘
𝑑𝑖𝑠𝑡 𝑜, 𝑦 > 𝑘 + 𝑑𝑖𝑠𝑡 𝑜, 𝑥
𝑑𝑖𝑠𝑡 𝑜, 𝑦 > 𝑑𝑖𝑠𝑡(𝑥, 𝑦) + 𝑑𝑖𝑠𝑡 𝑜, 𝑥
violates definition of 𝑑𝑖𝑠𝑡 𝑜, 𝑦 !

𝑧𝑥

𝑦
5

−5

−2

−3

𝑜

𝜎 𝑥 = −𝑑𝑖𝑠𝑡 𝑜, 𝑥 = 5
𝜎 𝑦 = −𝑑𝑖𝑠𝑡 𝑜, 𝑦 = 0
𝜎 𝑧 = −𝑑𝑖𝑠𝑡 𝑜, 𝑧 = 8

Summary of DP for Difference Logic

• Satisfiability check for conjunctive fragment of DL can be performed
using Bellman-Ford algorithm in time O(|V|.|E|)
• Inconsistency/unsatisfiability explanations are negative cycles
• Amenable to incremental checks

Theory solvers/decision
procedures

Arithmetic
Bitvectors

DPLL Difference logic
…

Uninterpreted
functions

Core

literals/formula in
real arithmetic

solution or
counterexample

boolean
skeleton of

problem

assertions

Return to SMT
𝜙 ≡ 𝑔 𝑎 = 𝑐 ∧ 𝑓 𝑔 𝑎 ≠ 𝑓 𝑐 ∨ 𝑔 𝑎 = 𝑑 ∧ 𝑐 ≠ 𝑑
Several approaches, lazy approach:
• Abstract 𝜙 to propositional form
• Feed to DPLL
• Use theory decision procedure to refine propositional formula a guide SAT

• 𝜙 ≡ 𝑔 𝑎 = 𝑐 ∧ 𝑓 𝑔 𝑎 ≠ 𝑓 𝑐 ∨ 𝑔 𝑎 = 𝑑 ∧ 𝑐 ≠ 𝑑

1 L2 3 \4
• send {1, L2 ∨ 3, \4 } to DPLL
• returns model {1, L2, \4 }
• UF solver concretizes to 𝑔 𝑎 = 𝑐 , 𝑓 𝑔 𝑎 ≠ 𝑓 𝑐 , 𝑐 ≠ 𝑑
• checks this as UNSAT
• send {1, L2 ∨ 3, \4 , L1 ∨ 2 ∨ 4 } to DPLL
• returns model {1, 2, 3, \4 }
• UF solver concretizes and finds this to be UNSAT
• send {1, L2 ∨ 3, \4 , \1 ∨ 2 ∨ 4, \1 ∨ \2 ∨ \3 ∨ 4 } to DPLL
• returns UNSAT

Theory solvers/decision
procedures

Arithmetic

Bitvectors

DPLL Difference
logic …

Uninterprete
d functions

Core

literals/formula in
real arithmetic

solution or
counterexample

boolean
skeleton of

problem

asserti
ons

Assignments

• Learn z3
• https://ericpony.github.io/z3py-tutorial/guide-examples.htm

Readings
• Read chapter 4 for next week
• Reading more about decision procedures

https://ericpony.github.io/z3py-tutorial/guide-examples.htm

