Satisfiability modulo theories

Verifying cyberphysical systems

Sayan Mitra

mitras@illinois.edu

Some of the slides and examples for this lecture are from Clark Barrett

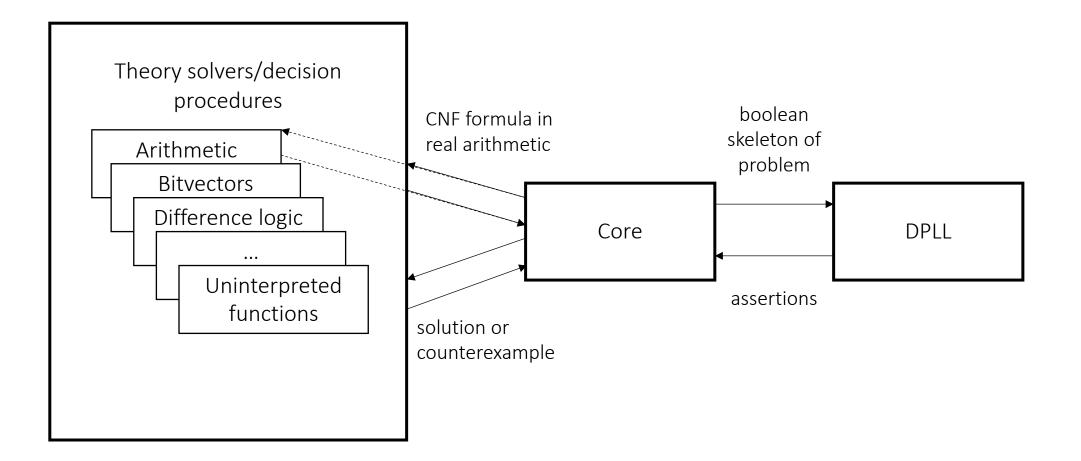
Today

- Satisfiability modulo theories (SMT)
 - Theories, models, decision procedures
 - Uninterpreted Functions
 - Difference Logic
- Brief z3 tutorial (see notebook)

Satisfiability modulo theories

- SAT: Given a *well-formed formula* in propositional logic, determine whether there exists a satisfying solution
- A *satisfiability modulo theory* (SMT) problem is a generalization of SAT in which some of the binary variables are replaced by predicates over a suitable set of non-binary variables
- $\phi_1(w, x, y, z) := (x y = 5) \land (z y \ge 2) \land (z x > 2) \land (w x = 2)$
- $\phi_2(x, y, z) := (3x^2 4y + 5z \le 5) \land (-2x + 5z^3 \le 7)$
- ϕ_1 is a predicate in *difference logic* in which the variables are real-valued, and the clauses are constructed with standard comparison operations >, >=, =\$ and -(minus)
- ϕ_2 is a predicate in real arithmetic

Architecture of an SMT solver



$\langle model \ theory \rangle$

A short overview of theories, models, decision procedures

What is a theory in mathematical logic?

- When we talk about well-formed formulas with non-binary variables, we have to say exactly what type of formulas are allowed
- and, what it means for assignments to satisfy such formulas
- This brings us to some basic notions in mathematical logic
 - *theory* --- what does a well-formed formula look like ?
 - *models* --- what does it mean to satisfy a formula?

Building up a theory

First, we define the syntax for writing formulas A signature $\Sigma = (\Sigma_F, \Sigma_P, V)$

- Σ_F : set of *function* symbols, e.g., {+, -, f, g, sin, ...}
- Σ_P : set of *predicate symbols*
 - *arity* of each function: $arity: \Sigma_F \to \mathbb{N}$
 - *0 arity* functions are constants
- V: set of variables

 $Terms(\Sigma, V)$

- Elements of V are terms
- If $t_1, ..., t_k \in Terms(\Sigma, V)$ and $f \in \Sigma_F$ with arity k, then $f(t_1, ..., t_k) \in Terms(\Sigma, V)$
- *Ground terms* are terms without variables

- $\Sigma_F = \{0, +\}, \Sigma_P = \{<\}$
- arity(0) = 0
- arity(+) = 2
- arity(<) = 2
- $V = \{x, y, z\}$
- Terms defined by this signature are x, y, z, +(x, y), +(+(x, y), 0), 0, ...

Terms to Formulas

- Atomic formulas AF
 - True, False
 - If $t_1, ..., t_k \in Terms(\Sigma, V)$ and $p \in \Sigma_P$ with arity k, then $p(t_1, ..., t_k) \in AF(\Sigma, V)$
 - A literal is an AF or its negation
 - Set of all atomic formulas $AF(\Sigma, V)$
- Quantifier free formulas $QFF(\Sigma, V)$
 - *AF*
 - if $\phi_1, \phi_2 \in QFF$ then
 - $\neg \phi_1 \in QFF, \phi_1 \land \phi_2 \in QFF, \phi_1 \lor \phi_2 \in QFF, \phi_1 \rightarrow \phi_2 \in QFF$
 - Set of all quantifier free formulas $QFF(\Sigma, V)$
- First order formulas is the set of quantifier free formulas under universal and existential quantifiers
 - Bound variables are those that are attached to quantifiers
 - Free variables: variables not bound
- Sentence: First order formula with no free variables
- Theory (Σ, V) set of all sentences over (Σ, V)

- x < y
 +(x, y) = +(y, x)
 - $+(x,y) = 0 \land x > y$
- $\forall x, \exists y: +(x, y) = 0$
- $\forall x, \exists y: x < y$
- $\forall x, \exists y: +(x, y) = x$
- $\exists x: +(x,c) = x$

Models for theories

This notion of model from mathematical logic is not to be confused with the notion of a model for a computational or physical process

- A *model* gives meanings or *interpretations* to formulas in theory T
- A model *M* for $T = Theory(\Sigma, V)$ has to define
 - A domain |M|
 - interpretations of all functions and predicate symbols
 - $M(f): |M|^n \to |M|$ if $\operatorname{arity}(f) = n$
 - $M(\mathbf{p}) \subseteq |M|^n$ if arity(p) = n
 - Assignment $M(x) \in |M|$ for every variable $x \in V$
- A formula φ is true in M if it evaluates to true under the given interpretations over domain M

Example

A *model* gives meanings or *interpretations* to formulas in theory T

Example model for $\Sigma = \{0, +, <\}$ $|M| = \{a, b, c\}$ $M(0) = \overline{a}$ $M(\langle) = \{\langle a, b \rangle, \langle a, c \rangle, \langle b, c \rangle\}$

M(+)	а	b	ЪС
a	а	b	С
b	b	С	а
С	С	а	b

if
$$M(x) = a, M(y) = b$$

then $M(+(x, y))$ is $M(+)(M(x), M(y)) =$
 $M(+)(a, b) = b$
 $M(+(+(x, y), y) = c$
 $M \models \forall x \exists y + (x, y) = x$

We say that the model *M T*-satisfies the formula ϕ

Decision procedures

Given a theory T a theory solver or a decision procedure for T takes as input a set of literals ϕ (atomic propositions) and determines whether ϕ is T-satisfiable, that is,

 \exists a model *M* such that $M \vDash \phi$?

A short overview of theories and models in mathematical logic

Example theories

• Linear arithmetic

•
$$4x - 3y + 6z \le 10, x + y - z \le 1;$$

- Real arithmetic (nonlinear)
 - $4x^2 + 6y 9z^3 \le 5$
- Bit vectors
- Arrays
 - x'[i] = x[i] + 1
- Uninterpreted functions (UF) $\Sigma_F := \{f, g, ...\}, \Sigma_P := \{=\}, V := \{x_i\}$

• $x_1 = x_2 \land x_3 \neq x_2 \land f(x_3) \neq f(x_2)$

- Difference logic $\Sigma_F := \{1, 2, ..., -\}, \Sigma_P := \{<, \leq, =, >, \geq\}$
 - $x_1 x_2 \ge k$, where $\ge \in \{<, \le, =, >, \ge\}$

Uninterpreted functions

Useful for abstractly reasoning about programs

•
$$\Sigma_F := \{f, g, ...\}, \Sigma_P := \{=\}, V := \{x_i\}$$

Literals are of the form $x_1 = x_2 \land x_3 \neq x_2 \land f(x_3) \neq f(x_2)$

Decision procedure for Uninterpreted functions (UF)

$$\phi = x_1 = x_2 \land (x_2 = x_3) \land (x_4 = x_5) \land (x_5 \neq x_1) \land (F(x_1) \neq F(x_3))$$

Decision procedure

- 1. Put all variables and function instances in their own classes
- 2. If $t_1 = t_2$ is a literal then merge the classes containing them; do this repeatedly
- 3. If t_1 and t_2 are terms in the same class then merge classes containing $F(t_1)$ and $F(t_2)$; repeat
- 4. If $t_1 \neq t_2$ is a literal in ϕ and they belong to the same class then return unsat else return sat t_1 and t_2

Decision procedure for Uninterpreted functions (UF)

Initial classes $\phi = x_1 = x_2 \land (x_2 = x_3) \land (x_4 = x_5) \land (x_5 \neq x_1) \land (F(x_1) \neq F(x_3))$

Classes $\{x_1\} \{x_2\} \{x_3\} \{x_4\} \{x_5\} \{F(x_1)\} \{F(x_3)\}$

```
\{x_1, x_2, x_3\} \{x_4, x_5\} \{F(x_1)\} \{F(x_3)\}
```

 $\{x_1, x_2, x_3\} \{x_4, x_5\} \{F(x_1), F(x_3)\}$

Unsat

Difference Logic (conjunctive fragment)

A useful fragment of linear arithmetic

 $\Sigma_F := \{1, 2, ..., -\} \\ \Sigma_P := \{<, \le, =, \neq, >, \ge\}$

Literals are of the form $x_1 - x_2 \ge k$, where $\ge \in \{<, \le, =, >, \ge\}$

 x_1, x_2 are Integers or rational variables

Example:
$$\phi = (x - y = 5) \land (z - y \ge 2) \land (z - x > 2) \land (w - x = 2) \land (z - w < 0)$$

Satisfiability is checking whether this formula is consistent

An Application: Job shop scheduling problem

Given a finite set of n jobs. Each job i of which consists of a chain of operations $(m_1^i, d_1^i), (m_2^i, d_2^i), \dots$ There is a finite set of m machines $M = \{m_1, m_2, \dots, m_m\}$, each of which can handle at most one operation at a time.

The problem of finding a shortest schedule---allocation of machine time to jobs---can be formulated in DL.

Decision procedure for Difference logic

 $\phi = (x - y = 5) \land (z - y \ge 2) \land (z - x > 2) \land (w - x = 2) \land (z - w < 0)$

Decision procedure:

Convert each literal (AF) to $x_1 - x_2 \le c$ form:

$$\phi' = (x - y \le 5) \land (y - x \le -5)$$

$$\land (y - z \le -2) \land$$

$$(x - z \le -3) \land$$

$$(w - x \le 2) \land (x - w \le -2)$$

$$(z - w \le -1)$$

For integer domain $(x_1 - x_2 < k)$ is replaced by $(x_1 - x_2 < k - 1)$ How to check satisfiability or consistency of formula ϕ' ?

$$\phi' = (x - y \le 5) \land (y - x \le -5)$$

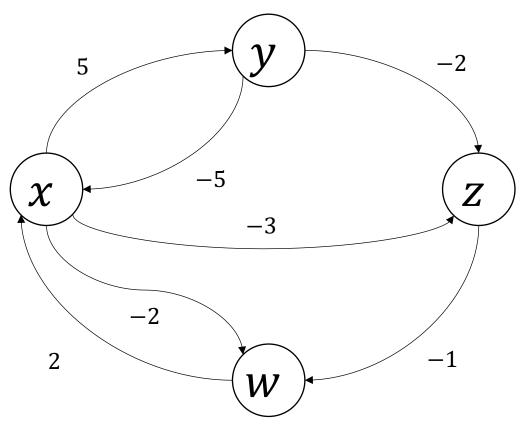
$$\land (y - z \le -2) \land$$

$$(x - z \le -3) \land$$

$$(w - x \le 2) \land (x - w \le -2)$$

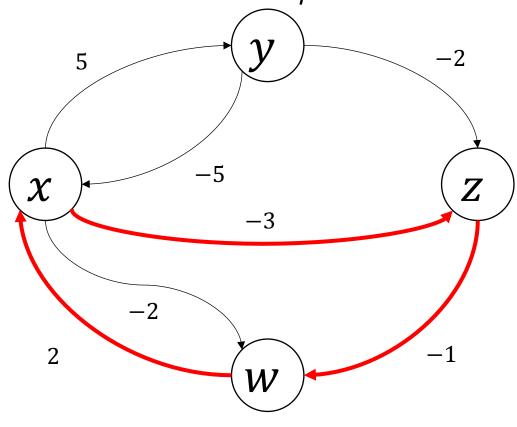
$$(z - w \le -1)$$

Construct a graph with edge from $x \rightarrow^{c} y$ for each literal $x - y \leq c$ in ϕ'



$$\phi' = (x - y \le 5) \land (y - x \le -5) \land (y - z \le -2) \land (x - z \le -2) \land (x - x \le 2) \land (x - w \le -2) \land (z - w \le -1)$$

Construct a graph G_{ϕ} , with edge from $x \rightarrow^{c} y$ for each literal ϕ'

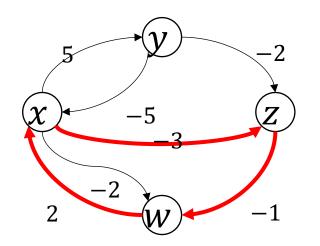


Proposition. ϕ is satisfiable iff $G_{\phi'}$ is negative cycle free.

Proof. (<=) If there is a negative cycle then

 $(x - z \le -3); (z - w \le -1); (w - x \le 2)$

adding all up: $(0 \le -2)$ which is inconsistent.



x -5 -3 z 0

 $\sigma(x) = -dist(o, x) = 5$ $\sigma(y) = -dist(o, y) = 0$ $\sigma(z) = -dist(o, z) = 8$ **Proposition.** ϕ is satisfiable iff G_{ϕ} , is negative cycle free.

Proof. (<=) If there is a negative cycle then

 $(x - z \le -3); (z - w \le -1); (w - x \le 2)$ adding all up: $(0 \le -2)$ which is inconsistent.

(=>) Let us assume that there is no negative cycle. We will construct a satisfying solution $\sigma: V \to \mathbb{Z}$

Consider additional vertex o with $o \rightarrow^0 v$ edges for all v

For each variable x, define solution $\sigma(x) = -dist(o, x)$ [possible because there is no negative cycle]

Suppose FSOC, σ does not satisfy a literal $x - y \le k$ then -dist(o, x) + dist(o, y) > k dist(o, y) > k + dist(o, x)dist(o, y) > dist(x, y) + dist(o, x)

violates definition of dist(o, y)!

Summary of DP for Difference Logic

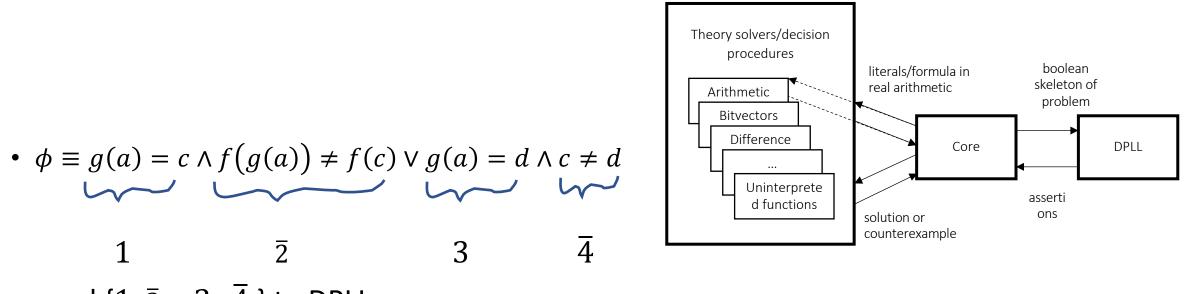
- Satisfiability check for conjunctive fragment of DL can be performed using Bellman-Ford algorithm in time O(|V|.|E|)
- Inconsistency/unsatisfiability explanations are negative cycles
- Amenable to incremental checks

Return to SMT

$\phi \equiv g(a) = c \wedge f\bigl(g(a)\bigr) \neq f(c) \vee g(a) = d \wedge c \neq d$

Several approaches, lazy approach:

- Abstract ϕ to propositional form
- Feed to DPLL
- Use theory decision procedure to refine propositional formula a guide SAT • Theory solvers/decision procedures boolean literals/formula in skeleton of real arithmetic Arithmetic problem Bitvectors Difference logic Core DPLL • • • Uninterpreted assertions functions solution or counterexample



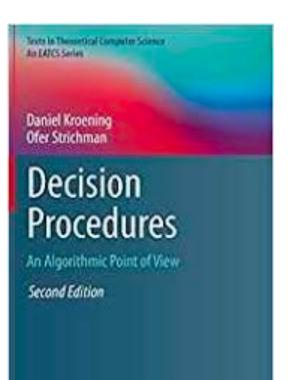
- send $\{1, \overline{2} \lor 3, \overline{4}\}$ to DPLL
- returns model $\{1, \overline{2}, \overline{4}\}$
- UF solver concretizes to g(a) = c, $f(g(a)) \neq f(c), c \neq d$
- checks this as UNSAT
- send {1, $\overline{2} \lor 3$, $\overline{4}$, $\overline{1} \lor 2 \lor 4$ } to DPLL
- returns model $\{1, 2, 3, \overline{4}\}$
- UF solver concretizes and finds this to be UNSAT
- send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{2} \lor \overline{3} \lor 4\}$ to DPLL
- returns UNSAT

Assignments

- Learn z3
 - <u>https://ericpony.github.io/z3py-tutorial/guide-examples.htm</u>

Readings

- Read chapter 4 for next week
- Reading more about decision procedures



Springer