
Satisfiability modulo theories
Verifying cyberphysical systems

Sayan Mitra
mitras@illinois.edu

Some of the slides and examples for this lecture are from Clark Barrett

mailto:mitras@illinois.edu

Today

• Satisfiability modulo theories (SMT)
• Theories, models, decision procedures
• Examples

• Brief z3 tutorial (see notebook)

Satisfiability modulo theories

• SAT: Given a well-formed formula in propositional logic, determine
whether there exists a satisfying solution
• A satisfiability modulo theory (SMT) problem is a generalization of SAT

in which some of the binary variables are replaced by predicates over a
suitable set of non-binary variables

• 𝜙" 𝑤, 𝑥, 𝑦, 𝑧 : = 𝑥 − 𝑦 = 5 ∧ 𝑧 − 𝑦 ≥ 2 ∧ 𝑧 − 𝑥 > 2 ∧ (𝑤 − 𝑥 = 2)
• 𝜙2 𝑥, 𝑦, 𝑧 : = 3𝑥2 − 4𝑦 + 5𝑧 ≤ 5 ∧ (−2𝑥 + 5𝑧7 ≤ 7)
• 𝜙" is a predicate in difference logic in which the variables are real-valued, and the clauses are

constructed with standard comparison operations >, >=, =$ and –(minus)

• 𝜙2 is a predicate in real arithmetic

Theory solvers/decision
procedures

Arithmetic
Bitvectors

DPLL Difference logic
…

Uninterpreted
functions

Core

CNF formula in
real arithmetic

solution or
counterexample

boolean
skeleton of

problem

assertions

Architecture of an SMT solver

⟨𝑙𝑜𝑔𝑖𝑐⟩
A short overview of theories, models, decision procedures

What is a theory in mathematical logic?

• When we talk about well-formed formulas with non-binary variables,
we have to say exactly what type of formulas are allowed
• and, what it means for assignments to satisfy such formulas
• This brings us to the notions theory and models in mathematical logic

Building up a theory
• First we define the syntax for writing

formulas

• A signature Σ = (ΣA, ΣB, 𝑉)
• set of function symbols
ΣA, 𝑒. 𝑔. , +,−, 𝑓, 𝑔, 𝑠𝑖𝑛, …

• set of predicate symbols ΣB
• arity of each function: 𝑎𝑟𝑖𝑡𝑦: ΣA → ℕ
• 0 arity functions are constants
• 𝑉: set of variables

• 𝑇𝑒𝑟𝑚𝑠 Σ, 𝑉
• Elements of 𝑉 are terms
• If 𝑡", … , 𝑡Q ∈ 𝑇𝑒𝑟𝑚𝑠 Σ, 𝑉 and 𝑓 ∈ ΣA with

arity k, then 𝑓 𝑡", … , 𝑡Q ∈ 𝑇𝑒𝑟𝑚𝑠(Σ, 𝑉)
• Ground terms are terms without variables

• ΣA = 0,+ , ΣB = <

• 𝑎𝑟𝑖𝑡𝑦 0 = 0

• 𝑎𝑟𝑖𝑡𝑦 + = 2

• 𝑎𝑟𝑖𝑡𝑦 < = 2

• 𝑉 = {𝑥, 𝑦, 𝑧}

• Terms defined by this signature are
𝑥, 𝑦, 𝑧, + 𝑥, 𝑦 , + + 𝑥, 𝑦 , 0 , 0, …

Terms to Formulas
• Atomic formulas 𝐴𝐹

• True, False
• If 𝑡", … , 𝑡Q ∈ 𝑇𝑒𝑟𝑚𝑠 Σ, 𝑉 and p ∈ ΣB with arity k, then p 𝑡", … , 𝑡Q ∈ 𝐴𝐹(Σ, 𝑉)
• A literal is an AF or its negation
• Set of all atomic formulas 𝐴𝐹 Σ, 𝑉

• Quantifier free formulas 𝑄𝐹𝐹 Σ, 𝑉
• 𝐴𝐹

• if 𝜙", 𝜙2 ∈ 𝑄𝐹𝐹 then
• ¬𝜙" ∈ 𝑄𝐹𝐹,𝜙" ∧ 𝜙2 ∈ 𝑄𝐹𝐹,𝜙" ∨ 𝜙2 ∈ 𝑄𝐹𝐹,𝜙" → 𝜙2 ∈ 𝑄𝐹𝐹

• Set of all quantifier free formulas 𝑄𝐹𝐹 Σ, 𝑉

• First order formulas is the set of quantifier free formulas under universal and
existential quantifiers
• Bound variables are those that are attached to quantifiers
• Free variables: variables not bound

• Sentence: First order formula with no free variables

• Theory Σ, 𝑉 set of all sentences over Σ, 𝑉

• 𝑥 < 𝑦
• + 𝑥, 𝑦 = +(𝑦, 𝑥)

• + 𝑥, 𝑦 = 0 ∧ 𝑥 > 𝑦

• ∀𝑥, ∃𝑦:+ 𝑥, 𝑦 = 0
• ∀𝑥, ∃𝑦: 𝑥 < 𝑦
• ∀𝑥, ∃𝑦:+ 𝑥, 𝑦 = 𝑥

• ∃𝑥:+ 𝑥, 𝑐 = 𝑥

Models for theories
This notion of model from mathematical logic is not to
be confused with the notion of a model for a
computational or physical process

• A model gives meanings or interpretations to
formulas in theory 𝑇

• A model 𝑀 for T = Theory(Σ, 𝑉) has to define
• A domain |M|
• interpretations of all functions and predicate symbols
• 𝑀 𝑓 : 𝑀 h → |𝑀| if arity 𝑓 = 𝑛
• 𝑀 𝑝 ⊆ 𝑀 h if 𝑎𝑟𝑖𝑡𝑦 𝑝 = 𝑛
• Assignment 𝑀 𝑥 ∈ |𝑀| for every variable 𝑥 ∈ 𝑉

• A formula 𝜙 is true in 𝑀 if it evaluates to true under
the given interpretations over domain 𝑀

Example model for Σ = {0,+,<}
𝑀 = 𝑎, 𝑏, 𝑐
𝑀 0 = 𝑎

𝑀 < = { 𝑎, 𝑏 , 𝑎, 𝑐 , ⟨𝑏, 𝑐⟩}

𝑀 + 𝑎 𝑏 𝑏
𝑎 𝑎 𝑏 𝑐
𝑏 𝑏 𝑐 𝑎
𝑐 𝑐 𝑎 𝑏

if 𝑀 𝑥 = 𝑎,𝑀 𝑦 = 𝑏

then 𝑀 +(𝑥, 𝑦) is 𝑀 + 𝑀 𝑥 ,𝑀 𝑦 =
𝑀 + 𝑎, 𝑏 = 𝑏
𝑀(+ + 𝑥, 𝑦 , 𝑦 = 𝑐
𝑀 ⊨ ∀𝑥 ∃𝑦 + 𝑥, 𝑦 = 𝑥

We say that the model 𝑀 T-satisfies the formula 𝜙

Decision procedures

Given a theory 𝑇 a theory solver or a decision procedure for 𝑇 takes as
input a set of literals 𝜙 (atomic propositions) and determines whether
𝜙 is 𝑇-satisfiable, that is,
∃ a model 𝑀 such that 𝑀 ⊨ 𝜙?

⟨\𝑙𝑜𝑔𝑖𝑐⟩
A short overview of theories and models in mathematical logic

Example theories
• Uninterpreted functions (UF) ΣA:= 𝑓, 𝑔, … , ΣB:= = , 𝑉:= 𝑥r
• 𝑥" = 𝑥2 ∧ 𝑥7 ≠ 𝑥2 ∧ 𝑓 𝑥7 ≠ 𝑓(𝑥2)

• Difference logic ΣA:= 1,2, . . , − , ΣB: = <,≤,=,>,≥
• 𝑥" − 𝑥2 ≷ 𝑘, where ≷∈ <,≤,=,>,≥

• Linear arithmetic
• 4𝑥 − 3𝑦 + 6𝑧 ≤ 10

• Real arithmetic (nonlinear)
• 4𝑥2 + 6𝑦 − 9𝑧7 ≤ 5

• Bit vectors
• Arrays
• 𝑥y 𝑖 = 𝑥 𝑖 + 1

Example decision procedure 1: Difference logic

𝜙 = (𝑥 − 𝑦 = 5) ∧ (𝑧 − 𝑦 ≥ 2) ∧ (𝑧 − 𝑥 > 2) ∧ (𝑤 − 𝑥 = 2) ∧ (𝑧 − 𝑤 < 0)
Decision procedure:
Convert each literal (AF) to 𝑥" − 𝑥2 ≤ 𝑐 form:

𝜙y = 𝑥 − 𝑦 ≤ 5 ∧ (𝑦 − 𝑥 ≤ −5)
∧ 𝑦 − 𝑧 ≤ −2 ∧
𝑥 − 𝑧 ≤ −3 ∧

𝑤 − 𝑥 ≤ 2 ∧ (𝑥 − 𝑤 ≤ −2)
(𝑧 − 𝑤 ≤ −1)

Construct a graph with edge from 𝑥 →z 𝑦 for each literal 𝜙′

𝜙y = 𝑥 − 𝑦 ≤ 5 ∧ (𝑦 − 𝑥 ≤ −5)
∧ 𝑦 − 𝑧 ≤ −2 ∧
𝑥 − 𝑧 ≤ −3 ∧

𝑤 − 𝑥 ≤ 2 ∧ (𝑥 − 𝑤 ≤ −2)
(𝑧 − 𝑤 ≤ −1)

𝑥

𝑦

𝑧

𝑤

5

−5

−2

−3

2

−2

−1

Construct a graph 𝐺}y with edge from 𝑥 →z 𝑦 for each literal 𝜙′

𝜙y = 𝑥 − 𝑦 ≤ 5 ∧ (𝑦 − 𝑥 ≤ −5)
∧ 𝑦 − 𝑧 ≤ −2 ∧
𝑥 − 𝑧 ≤ −3 ∧

𝑤 − 𝑥 ≤ 2 ∧ (𝑥 − 𝑤 ≤ −2)
(𝑧 − 𝑤 ≤ −1)

𝑥

𝑦

𝑧

𝑤

5

−5

−2

−3

2

−2

−1

Proposition. 𝜙 is satisfiable iff G}y is
negative cycle free.

Exercise.

Example decision procedure 2: Uninterpreted
functions (UF)

𝜙 = 𝑥" = 𝑥2 ∧ (𝑥2 = 𝑥7) ∧ (𝑥� = 𝑥�) ∧ 𝑥� ≠ 𝑥" ∧ (𝐹 𝑥" ≠ 𝐹 𝑥7)

Decision procedure
1. Put all variables and function instances in their own classes
2. If 𝑡" = 𝑡2 is a literal then merge the classes containing them; do this

repeatedly
3. If 𝑡" and 𝑡2 are terms in the same class then merge classes containing

𝐹 𝑡" and 𝐹(𝑡2); repeat
4. If 𝑡" ≠ 𝑡2 is a literal in 𝜙 and they belong to the same class then return

unsat else return sat 𝑡" and 𝑡2

Example decision procedure 2: Uninterpreted
functions (UF)

Initial classes 𝜙 = 𝑥" = 𝑥2 ∧ (𝑥2 = 𝑥7) ∧ (𝑥� = 𝑥�) ∧ 𝑥� ≠ 𝑥" ∧ (𝐹 𝑥" ≠
𝐹 𝑥7)

Classes {𝑥"} 𝑥2 𝑥7 𝑥� 𝑥� 𝐹 𝑥" 𝐹 𝑥7

{𝑥", 𝑥2, 𝑥7} 𝑥�, 𝑥� 𝐹 𝑥" 𝐹 𝑥7

{𝑥", 𝑥2, 𝑥7} 𝑥�, 𝑥� 𝐹 𝑥" , 𝐹(𝑥7)

Unsat

Theory solvers/decision
procedures

Arithmetic
Bitvectors

DPLL Difference logic
…

Uninterpreted
functions

Core

literals/formula in
real arithmetic

solution or
counterexample

boolean
skeleton of

problem

assertions

Return to SMT
𝜙 ≡ 𝑔 𝑎 = 𝑐 ∧ 𝑓 𝑔 𝑎 ≠ 𝑓 𝑐 ∨ 𝑔 𝑎 = 𝑑 ∧ 𝑐 ≠ 𝑑
Several approaches, lazy approach:
• Abstract 𝜙 to propositional form
• Feed to DPLL
• Use theory decision procedure to refine propositional formula a guide SAT

• 𝜙 ≡ 𝑔 𝑎 = 𝑐 ∧ 𝑓 𝑔 𝑎 ≠ 𝑓 𝑐 ∨ 𝑔 𝑎 = 𝑑 ∧ 𝑐 ≠ 𝑑

1 �2 3 �4
• send {1, �2 ∨ 3, �4 } to DPLL
• returns model {1, �2, �4 }
• UF solver concretizes to 𝑔 𝑎 = 𝑐 , 𝑓 𝑔 𝑎 ≠ 𝑓 𝑐 , 𝑐 ≠ 𝑑
• checks this as UNSAT
• send {1, �2 ∨ 3, �4 , �1 ∨ 2 ∨ 4 } to DPLL
• returns model {1, 2, 3, �4 }
• UF solver concretizes and finds this to be UNSAT
• send {1, �2 ∨ 3, �4 , �1 ∨ 2 ∨ 4, �1 ∨ �2 ∨ �3 ∨ 4 } to DPLL
• returns UNSAT

Theory solvers/decision
procedures

Arithmetic

Bitvectors

DPLL Difference
logic …

Uninterprete
d functions

Core

literals/formula in
real arithmetic

solution or
counterexample

boolean
skeleton of

problem

asserti
ons

Assignments

• HW1
• Learn z3
• https://ericpony.github.io/z3py-tutorial/guide-examples.htm

Readings
• Chapter 7.5.3 of CPSBook on using SAT/SMT for verification
• Read chapter 4 for next week
• Reading more about decision procedures

https://ericpony.github.io/z3py-tutorial/guide-examples.htm

