Satisfiability modulo theories
Verifying cyberphysical systems

Sayan Mitra

mitras@illinois.edu

Some of the slides and examples for this lecture are from Clark Barrett

mailto:mitras@illinois.edu

Today

e Satisfiability modulo theories (SMT)
* Theories, models, decision procedures
* Examples

* Brief z3 tutorial (see notebook)

Satisfiability modulo theories

e SAT: Given a well-formed formula in propositional logic, determine
whether there exists a satisfying solution

* A satisfiability modulo theory (SMT) problem is a generalization of SAT
in which some of the binary variables are replaced by predicates over a
suitable set of non-binary variables

s p1(w,x,y,2):= (x—y =5)AZz—-y=22)AN(z—x>2)A(w —x = 2)

o ¢(x,v,2):= Bx?>—4y+5z< 5)A (=2x + 523 < 7)

* ¢4 is a predicate in difference logic in which the variables are real-valued, and the clauses are
constructed with standard comparison operations >, >=, =5 and —(minus)

* ¢, is a predicate in real arithmetic

Architecture of an SMT solver

Theory solvers/decision
procedures

Arithmetic
Bitvectors

Difference logic

Uninterpreted
functions

CNF formula in
real arithmetic

boolean
skeleton of
problem

Core

solution or
counterexample

assertions

DPLL

(logic)

A short overview of theories, models, decision procedures

What is a theory in mathematical logic?

* When we talk about well-formed formulas with non-binary variables,
we have to say exactly what type of formulas are allowed

e and, what it means for assignments to satisfy such formulas

* This brings us to the notions theory and models in mathematical logic

Building up a theory

* First we define the syntax for writing
formulas

* Asignature £ = (X, 2p,V)

set of function symbols

Xp,e.g,{+ — f, 9 sin, ..}

set of predicate symbols Xp

arity of each function: arity:Xr - N
O arity functions are constants

IV: set of variables

 Terms(Z,V)

Elements of I/ are terms
Ifty,...,tx € Terms(Z,V) and f € Xy with
arity k, then f(tq, ..., ty) € Terms(Z,V)

Ground terms are terms without variables

Lp = {0,+} Zp = {<}
arity(0) =0
arity(+) = 2
arity(<) = 2
V={x1y,z}

Terms defined by this signature are
x,v,z,+(x,y),+(+(x,y),0),0, ...

Terms to Formulas

Atomic formulas AF
* True, False
o Ifty,...,tx € Terms(Z, V) and p € Zp with arity k, then p(¢t4, ..., tx) € AF(Z,V)
* Aliteral is an AF or its negation
» Set of all atomic formulas AF (%, V)

Quantifier free formulas QFF (X, V)
e AF
e if 91,0, € QFF then
© ¢, €QFF, 1 A, € QFF,p; V p, € QFF, ¢, — ¢, € QFF
* Set of all quantifier free formulas QFF (X, V)
First order formulas is the set of quantifier free formulas under universal and
existential quantifiers

* Bound variables are those that are attached to quantifiers

* Free variables: variables not bound
Sentence: First order formula with no free variables

Theory(Z, V) set of all sentences over (%, V)

x <y
+(x,y) =+, x)

+(x,y) =0Ax >y

Vx,Ay:+(x,y) =0
Vx,dy:x <y
Vx,Ay:+(x,y) = x

Jx: +(x,¢c) = x

Models for theories

This notion of model from mathematical logic is not to
be confused with the notion of a model for a
computational or physical process

* A model gives meanings or interpretations to
formulas in theory T

* Amodel M for T = Theory(Z, V) has to define
* Adomain |M|
* interpretations of all functions and predicate symbols
o M(f):|IM|™* - |M|ifarity(f) =n
« M(p) € |M|™ifarity(p) =n
* Assignment M(x) € |M| for every variable x € V

* Aformula ¢ istrue in M if it evaluates to true under
the given interpretations over domain M

Example model for £ = {0, +, <}
M| ={a,b, c}
M(0) =a

M(<) = {(a,b),{(a,c), (b, c)}

M(+)| a b | C
a a C
b b c a
c c a b

ifM(x) =a,M(y)=b

then M(+(x,y)) is M(+)(M(x);M(Y)) =
M(+)(a,b) = b

M(+(+(x,y),y) =c

MEeVx3Ay+ (x,y) =x

We say that the model M T-satisfies the formula ¢

Decision procedures

Given a theory T a theory solver or a decision procedure for T takes as

input a set of literals ¢ (atomic propositions) and determines whether
¢ is T-satisfiable, that is,

1 a model M such that M E ¢?

(\logic)

A short overview of theories and models in mathematical logic

Example theories

 Uninterpreted functions (UF) Zz: = {f, g, ...}, Zp: = {=}, V:= {x;}
*x1 =% A Xx3Fx2 A f(x3) # f(x2)

e Difference logic2p: = {1,2,..,— },LZp: = {<, <, =, >, >}
¢ x;1 — Xy 2 k, where 2€ {<, <, =, >, >}

* Linear arithmetic
e 4x -3y +6z<10

e Real arithmetic (nonlinear)
* 4x%°4+6y—9z3 <5

* Bit vectors

* Arrays
e x'[i] = x[i] +1

Example decision procedure 1: Difference logic

b= (x—y=5ANzZ—-y=22)NzZ —x>2)ANW—-—x=2)AN (z —w<0)
Decision procedure:
Convert each literal (AF) to x; — x, < ¢ form:

¢'= (x—y<5A{y—x=<-5)
ANy—z<-=2)A
(x —z<-3)A
WwW—x<2)A(x —w < =2)
(z —w< —1)

¢'= (x—y<5A({—x<=<-5)
ANy—z<-2)A
(x —z<-3)A
wW—x<2)A(x —w < =2)
(z —w < —1)

Construct a graph with edge from x —¢ y for each literal ¢’

¢'= (x—y<5A({—x<=<-5)
ANy—z<-2)A
(x —z<-3)A
wW—x<2)A(x —w < =2)
(z —w< —1)

Construct a graph G4, with edge from x —¢ y for each literal ¢’

Proposition. ¢ is satisfiable iff Gy, is
negative cycle free.

Exercise.

Example decision procedure 2: Uninterpreted
functions (UF)

$=x1 =% AN(x3 =x3) AN(xg =x5) AN(xs #x1) A (F(xg) # F(x3))

Decision procedure
1. Put all variables and function instances in their own classes

2. Ift; = t, is aliteral then merge the classes containing them; do this
repeatedly

3. Ift; and t, are terms in the same class then merge classes containing
F(ty) and F(t,); repeat

4. Ifty #t, is aliteral in ¢ and they belong to the same class then return
unsat else return sat t; and t,

Example decision procedure 2: Uninterpreted
functions (UF)

Initial classes @ = x; = x, A (X = x3) A(xg =x5) A(xs £x) A (F(xy) #

F(x3))
Classes {x1} {x; Hxg Hxa Hos HF (g)HF (x3)}

{x1, %2, x3} {x4, x5 HF (1) HF (x3)}

{Xl,xz,X3} {X4, x5}{F(x1),F(x3)}

Unsat

d=gl@=crf(g@)=flc)vgla)=drc=d

Several approaches, lazy approach:

* Abstract ¢ to propositional form
 Feed to DPLL

* Use theory decision procedure to refine propositional formula a guide SAT

Return to SMT

Theory solvers/decision

procedures
) literals/formula in boolean
Arithmetic e real arithmetic skeleton of
problem
Bitvectors
Difference logic Core -
Uninterpreted .
fUﬂCtiOﬂS assertions
solution or

counterexample

¢Eg(a)=C/\f(g(a))if(c)Vg(a)=d/\c¢d

1 2 3 4
send {1,2 v3, 4 }to DPLL

returns model {1, 2, 4}

Theory solvers/decision

procedures
literals/formula in boolean
Arithmetic real arithmetic skeleton of
- problem

Bitvectors

Difference

Uninterprete
d functions

’
/
I
’
’ /
’ ’
/ .
’ ’
i i

Core

DPLL

solution or

counterexample

UF solver concretizes to g(a) = ¢, f(g(a)) * f(c),c+d

checks this as UNSAT
send{1,2v3, 4,1v2v4}toDPLL
returns model {1, 2, 3, 4}

asserti
ons

UF solver concretizes and finds this to be UNSAT
send{1,2 v3, 4,1v2Vv4,1v2v3v 4}toDPLL
returns UNSAT

Assignments

* HW1

* Learn z3
* https://ericpony.github.io/z3py-tutorial/guide-examples.htm

Readings
* Chapter 7.5.3 of CPSBook on using SAT/SMT for verification
* Read chapter 4 for next week

Daniel Krocning

e Reading more about decision procedures Deas'on

Procedures

Second Edition

https://ericpony.github.io/z3py-tutorial/guide-examples.htm

