Satisfiability modulo theories Part 2 Neural Theory Solvers

Verifying cyberphysical systems

Sayan Mitra

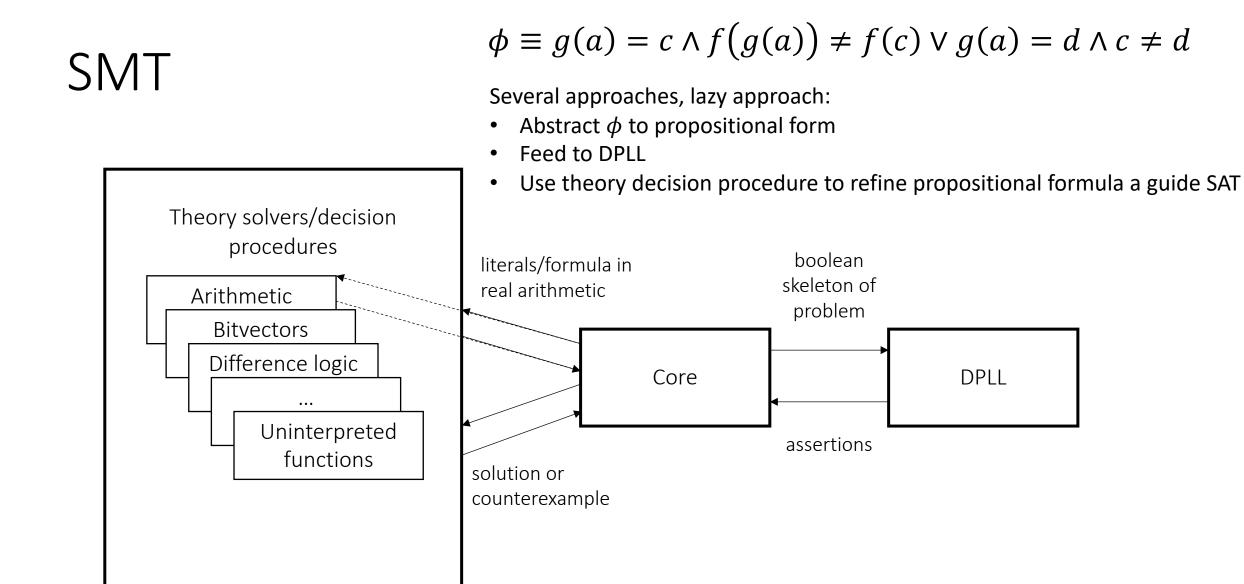
mitras@illinois.edu

Today

- SMT
- Decision procedure for Linear Real Arithmetic Simplex Algorithm [Dantzig 1947]
- Next week: Verification of Neural Networks Reluplex [Katz et al 2017]

References

- Lectures on SMT from Clark Barrett
- Book: Introduction to Neural Network Verification by Aws Albarghouthi
- Book: Decision Procedures by Daniel Kroening and Ofer Strichman



DPLL^{T:} DPLL modulo theories

How can we extend DPLL to handle formulas over other theories like

- Difference Logic (DL)
- Linear Real Arithmetic (LRA)
- Uninterpreted functions (UF)

Idea: Start with a *Boolean abstraction* (or skeleton) and incrementally add more *theory* information until we can conclusively say SAT or UNSAT

Example: DPLL^{LRA}

 $F \equiv (x \le 0 \lor x \le 10) \land (\neg x \le 0)$

Boolean abstraction: replace every unique linear inequality with a Boolean variable $F^B \equiv (p \lor q) \land (\neg p)$

where *p* abstracts $x \le 0$ and *q* abstracts $x \le 10$

Abstraction because information is lost

The relationship $x > 10 \Rightarrow x > 0$, i.e., $\neg q \Rightarrow \neg p$ is lost in F_B

Notation. $(F^B)^T$ maps F^B back to theory T, i.e., $(F^B)^T = F$.

Proposition. If F^B is UNSAT then F is UNSAT, but the converse does not hold, i.e., F^B is SAT does not mean that F is SAT.

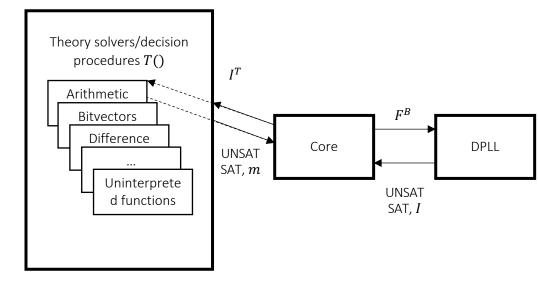
Example. $F_1 \equiv (x \le 0 \land x \ge 10)$ is clearly UNSAT, however $F_1^B \equiv p \land q$ is SAT.

Lazy DPLL^T Algorithm using a Decision Procedure T()

Input: A formula *F* in CNF form over theory T **Output:** $I \vDash F$ or UNSAT Let F^B be the abstraction of *F* **while** true **do if** DPLL(F^B) is unsat then **return** UNSAT **else**

Let *I* be the model returned by *DPLL* Assume *I* is represented as a formula

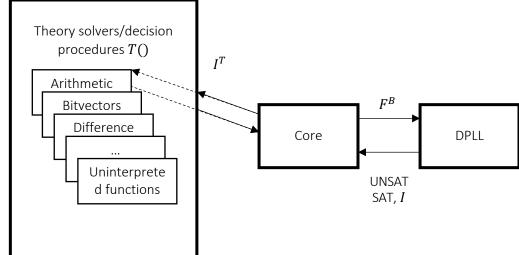
if $T(I^T)$ is sat then return SAT and the model returned by T()else $F^B \coloneqq F^B \land \neg I$



•
$$\phi \equiv g(a) = c \wedge f(g(a)) \neq f(c) \vee g(a) = d \wedge c \neq d$$

1 $\overline{2}$ $\overline{3}$ $\overline{4}$

- send $\phi^B \equiv \{1, \overline{2} \lor 3, \overline{4}\}$ to DPLL
- DPLL returns SAT with model $I:\{1, \overline{2}, \overline{4}\}$



- UF solver concretizes $I^{UF} \equiv g(a) = c$, $f(g(a)) \neq f(c), c \neq d$
- UF checks *I^{UF}* as UNSAT
- send $\phi^B \wedge \neg I$: {1, $\overline{2} \vee 3$, $\overline{4}$, $\overline{1} \vee 2 \vee 4$ } to DPLL; this is a new fact learned by DPLL
- DPLL returns model I': {1, 2, 3, $\overline{4}$ }
- UF solver concretizes I'^{UF} and finds this to be UNSAT
- send $\phi^B \land \neg I \land \neg I'$: {1, $\overline{2} \lor 3$, $\overline{4}$, $\overline{1} \lor 2 \lor 4$, $\overline{1} \lor \overline{2} \lor \overline{3} \lor 4$ } to DPLL; another fact
- returns UNSAT

Linear Real Arithmetic

Reference : Introduction to Neural Network Verification by Aws Albarghouthi

Decision Procedure for Linear Real Arithmetic

Input:
$$F \equiv \bigwedge_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{j} \leq b_{i}$$
 where $c_{ij}, b_{i} \in \mathbb{R}$
Output: $\exists x \in \mathbb{R}^{m}$ such that $x \models F$?

Solution based on Simplex Algorithm [Dantzig 1947] Simplex solves

 $\max \sum_{j=1}^{m} a_j x_j \text{ subject to}$ $\wedge_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_j \leq b_i$

Our focus will be on finding any solution $x \in \mathbb{R}^m$ that satisfies F

Decision Procedure for Linear Real Arithmetic

Input:
$$F \equiv \bigwedge_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_j \leq b_i$$
 where $c_{ij}, b_i \in \mathbb{R}$
Output: \exists a model $x \in \mathbb{R}^m$ such that $x \models F$?

Simplex expects F to be expressed in the Simplex form, which is a conjunction of

- Linear equalities: $\sum_{i=1}^{m} c_i x_i = 0$
- Bounds: $l_i \le x_i \le u_i$

Transforming to Simplex Form

Consider the i^{th} inequality in $F: \sum_{j=1}^{m} c_{ij} x_j \leq b_i$

Rewrite this as:

 $s_i = \sum_{j=1}^m c_{ij} x_j \land$ $s_i \le b_i$

s_i is called a *slack variable*

Putting together all the rewritten conjuncts we get F_S

Proposition.

1. Any model of F_S is a model of F, disregarding the assignments to the slack variables.

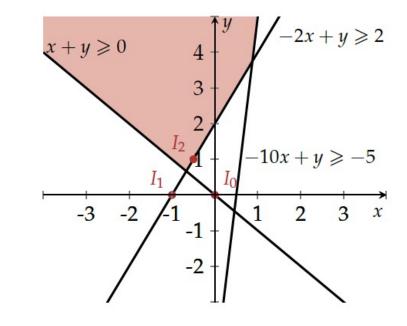
2. If F_S is UNSAT then F is UNSAT.

Simplex (Informal)

Idea. Simultaneously try to find a model or a proof of UNSAT

Start with some *model (or valuation)* that satisfies all linear equalities (say, $x_i = 0, \forall i$)

In each iteration, pick a bound that is not satisfied and modify the model to satisfy the bound OR discover that the formula is UNSAT



$$x_{0} = \langle x \mapsto 0, y \mapsto 0 \rangle$$

$$x_{0} \setminus \text{unsat} - 2x + y \ge 2$$

$$x_{1} = \langle x \mapsto -1, y \mapsto 0 \rangle$$

$$x_{1} \setminus \text{unsat} x + y \ge 0$$

$$x_{2} = \langle x \mapsto -\frac{1}{2}, y \mapsto 1 \rangle \models F$$

Variable naming and ordering for Simplex

The input formula F_S (after rewriting) has two types of variables

- **Basic variables** appear on the LHS of an equality; initially these are the *slack variables*
- Non-basic variables all others

In each iteration, some basic variable becomes non-basic

We fix an *arbitrary total ordering* on variables x_1, \ldots, x_n

For a basic variable x_i and non-basic variable x_j we denote by c_{ij} the coefficient of x_j in the definition of x_i , i.e.,

 $x_i = \dots + c_{ij} x_j + \dots$

The upper and lower bounds of x_i are called u_i and l_i (possibly $\infty, -\infty$)

Simplex (Formal) 1

The algorithm maintains two invariants

 The model *x* always satisfies the equalities; bounds may be violated. Why is this invariant satisfied by our initialization of all 0s?
 The bounds of all non-basic variables are all satisfied. Why is this invariant satisfied by our initialization?

Simplex Algorithm: DP for LRA

Input: A formula F_S in Simplex form **Output**: $x \models F_S$ or UNSAT $x \coloneqq \langle x_i \mapsto 0 \rangle$ while true do if $x \models F_S$ then return xLet x_i be the first basic variable s.t. $x \lceil x_i < l_i \text{ or } x \lceil x_i > u_i$ if $x \lceil x_i < l_i$ then $x_{i} = \sum_{k \in N}^{m} c_{ik} x_{k}, j \in N$ Pivoting x_{i} and x_{j} rewrites x_{j} as basic variable $x_{i} = c_{ij} x_{j} + \sum_{k \in N \setminus \{j\}}^{m} c_{ik} x_{k}$ $x_{j} = -\frac{x_{i}}{c_{ij}} + \sum_{k \in N \setminus \{j\}}^{m} \frac{c_{ik}}{c_{ij}} x_{k}$

$$\boldsymbol{x} [x_j \coloneqq \boldsymbol{x} [x_j + \frac{l_i - \boldsymbol{x}[x_i]}{c_{ij}}]$$

else

$$x [x_j \coloneqq x [x_j + \frac{u_i - x[x_i]}{c_{ij}}]$$

Pivot x_i and x_j

Simplex Algorithm: DP for LRA

Input: A formula F_S in Simplex form **Output**: $x \models F_S$ or UNSAT $x \coloneqq \langle x_i \mapsto 0 \rangle$ while true do if $x \models F_S$ then return xLet x_i be the first basic variable s.t. $x [x_i < l_i \text{ or } x [x_i > u_i]$

if $x [x_i < l_i$ then

Let x_i be the first non-basic variable s.t.

 $(x[x_j < u_j \land c_{ij} > 0) \lor (x[x_j > l_j \land c_{ij} < 0)$ If no such x_j exists **then return** UNSAT

 $\boldsymbol{x} [x_j \coloneqq \boldsymbol{x} [x_j + \frac{l_i - \boldsymbol{x} [x_i]}{c_{ij}}]$

else Let x_i be the first non-basic variable s.t.

 $(x[x_j > l_j \land c_{ij} > 0) \lor (x[x_j < u_j \land c_{ij} < 0)$ If no such x_j exists **then return** UNSAT $x[x_j \coloneqq x[x_j + \frac{u_i - x[x_i]}{c_{ij}}]$

Pivot x_i and x_j

 $x_{i} = \sum_{k \in N}^{m} c_{ik} x_{k}, j \in N$ Pivoting x_{i} and x_{j} rewrites x_{j} as basic variable $x_{i} = c_{ij} x_{j} + \sum_{k \in N \setminus \{j\}}^{m} c_{ik} x_{k}$ $x_{j} = -\frac{x_{i}}{c_{ij}} + \sum_{k \in N \setminus \{j\}}^{m} \frac{c_{ik}}{c_{ij}} x_{k}$

Example

 $x + y \ge 0$ $-2x + y \ge 2$ $-10x + y \ge -5$

Rewritten in Simplex form $s_1 = x + y$ $s_2 = -2x + y$ $s_3 = -10x + y$ $s_1 \ge 0$ $s_2 \ge 2$ $s_3 \ge -5$

Example continued

Variable ordering

 x, y, s_1, s_2, s_3

Initialization $x_0 = \langle x \mapsto 0, y \mapsto 0, s_1 \mapsto 0, s_2 \mapsto 0, s_3 \mapsto 0 \rangle$

 x_0 satisfies equalities, bounds of $s_1 s_3$ are satisfied

Pick the first variable x to fix the bound of s_2

Since upper and lower bounds of x are ∞ and $-\infty$ it easily satisfies the blue condition

To increase s_2 to 2 and satisfy its lowerbound we decrease x[x to -1] $x_1 = \langle x \mapsto -1, y \mapsto 0, s_1 \mapsto -1, s_2 \mapsto 2, s_3 \mapsto 10 \rangle$ Pivot s_2 with x $s_1 = -0.5s_2 + 0.5y$ $s_1 = -0.5s_2 + 1.5y$ $s_3 = 5s_2 - 4y$ $s_1 \ge 0$

$$s_{2} = -2x + y$$

$$s_{3} = -10x + y$$

$$s_{1} \ge 0$$

$$s_{2} \ge 2$$

$$s_{3} \ge -5$$

 $s_3 \ge -5$

 $-\infty \leq \chi \leq \infty$

 $s_1 = x + y$

Example continued 2

 $x = -0.5s_{2} + 0.5y$ $s_{1} = -0.5s_{2} + 1.5y$ $s_{3} = 5s_{2} - 4y$ $s_{1} \ge 0$ $s_{3} \ge -5$ $-\infty \le x \le \infty$

 $\boldsymbol{x_1} = \langle x \mapsto -1, y \mapsto 0, \boldsymbol{s_1} \mapsto -1, \boldsymbol{s_2} \mapsto 2, \boldsymbol{s_3} \mapsto 10 \rangle$

All equalities are still satisfied (invariant)

The only basic variable not satisfying its bounds is now s_1

The first non-basic variable we can tweak is y

Setting y=1 to satisfy the lowerbound of s1 we get $x_2 = \langle x \mapsto -0.5, y \mapsto 1, s_1 \mapsto 0.5, s_2 \mapsto 2, s_3 \mapsto 6 \rangle$ Pivot s_1 with y $x_2 \models F_S$

 $y = \frac{2}{3}s_1 + \frac{1}{3}s_2$ $x = +\frac{1}{3}s_1 - \frac{1}{3}s_2$ $s_2 \ge 2$ $s_1 \ge 0$ $s_3 \ge -5$ $-\infty \le x \le \infty$

Why is simplex correct?

• Why does it terminate?

Because we always looks for the first variable violating the bounds. There is a property (Bland's rule) that ensures that we never revisit the same set of basic and non-basic variables.

- Why does it give the right answer (sound)?
 - If it returns x does it satisfy $x \models F$?

This follows from the condition before return x

• If it returns UNSAT is *F* really unsatisfiable?

Unsatisfiable example

 $s_1 = x + y$

 $s_2 = -x - 2y$

- $s_3 = -x + y$
- $s_1 \ge 0$
- $s_2 \ge 2$
- $s_3 \ge 1$

Consider a Simplex execution in which there are two pivots:

Pivot 1: s_1 with x

 $x = s_1 - y$ $s_2 = -s_1 - y$ $s_3 = -s_1 + 2y$ Pivot 2: s_2 with y $x = 2s_1 + s_2$ $y = -s_1 - s_2$ $s_3 = -3s_1 - 2s_2$ Non-basic variables satisfy their bounds (invariant) and so $s_1 \ge 0, s_2 \ge 2$ If s_2 violates the bound then $s_3 = -3s_1 - 2s_2 < 1$ We can make s_3 bigger by decreasing s_1 and s_2 but the at most $s_3 = -3.0 - 2.2 = -4$ which is still less than 1 and Simplex concludes that the formula is UNSAT.

The blue conditions for choosing x_j encodes this condition.

Summary and Takeaways

- Satisfiability modulo theory solvers use theory solvers and DPLL to check satisfiability of formulas in other theories
 - DPLL takes care of disjunctions
 - Theory solvers take care of conjunctions
- Simplex or more generally Linear programming (LP) solvers is a theory solver for linear real arithmetic
 - Simplex algorithm solves LP by incrementally fixing the bounds of basic variables
- Next time Reluplex