Satistiability modulo theories Part 2
Neural Theory Solvers

Verifying cyberphysical systems

Sayan Mitra

mitras@illinois.edu

mailto:mitras@illinois.edu

Today

* SMT

* Decision procedure for Linear Real Arithmetic
Simplex Algorithm [Dantzig 1947]

 Next week: Verification of Neural Networks
Reluplex [Katz et al 2017]

References

e Lectures on SMT from Clark Barrett

* Book: Introduction to Neural Network Verification by Aws
Albarghouthi

* Book: Decision Procedures by Daniel Kroening and Ofer Strichman

d=gl@=crf(g@)=flc)vgla)=drc=d
SMT

Several approaches, lazy approach:

* Abstract ¢ to propositional form
 Feed to DPLL

* Use theory decision procedure to refine propositional formula a guide SAT

Theory solvers/decision

procedures
) literals/formula in boolean
Arithmetic e real arithmetic skeleton of
problem
Bitvectors
Difference logic Core -
Uninterpreted .
fUﬂCtiOﬂS assertions
solution or

counterexample

DPLL" DPLL modulo theories

How can we extend DPLL to handle formulas over other theories like
* Difference Logic (DL)

* Linear Real Arithmetic (LRA)

* Uninterpreted functions (UF)

|dea: Start with a Boolean abstraction (or skeleton) and
incrementally add more theory information

until we can conclusively say SAT or UNSAT

Example: DPLLYRA

F=x<0vVx<10)A(=x<0)

Boolean abstraction: replace every unique linear inequality with a Boolean variable
FE =@V A(-p)

where p abstracts x < 0 and q abstracts x < 10

Abstraction because information is lost

The relationshipx > 10 = x > 0,i.e.,, =g = —pislostin Fp

Notation. (F?)T maps FZ back to theory T, i.e., (FE)T = F.

Proposition. If FZ is UNSAT then F is UNSAT, but the converse does not hold, i.e., FZ is SAT does not
mean that F is SAT.

Example. F; = (x < 0 Ax = 10) is clearly UNSAT, however FZ = p A q is SAT.

Lazy DPLL" Algorithm using a Decision Procedure T ()

Input: A formula F in CNF form over theory T

Output: [E F or UNSAT e 1ty

Let F® be the abstraction of F pritmetie [|)

while true do \“_‘fiﬁfce | ﬁ Core : oPLL
if DPLL(F?) is unsat then return UNSAT e | |27 o

else — o
Let I be the model returned by DPLL

Assume [is represented as a formula
if T(I") is sat then return SAT and the model returned by T()

else FB := FB A <]

Theory solvers/decision
procedures T()

FB

W\J Bitvectors

¢ - gL(/a\)/jj 4 f&w v g(a) =dANc*d Arithmetic r%

1 2 4 Difference | Core

send $? ={1,2 v3, 4 }to DPLL " fonctons. unser
DPLL returns SAT with model I:{1, 2, 4}

UF solver concretizes IYF = g(a) = ¢, f(g(a)) # f(c),c #d

UF checks IYF as UNSAT

send qu A=l:{1,2 v3, 4,1v2v4}toDPLL; thisis a new fact learned by DPLL
DPLL returns model I': {1, 2, 3, 4}

UF solver concretizes I'YF and finds this to be UNSAT

send pBA=IA=I:{1,2Vv3, 4,1v2Vv4,1Vv2V3v 4}toDPLL another fact
returns UNSAT

DPLL

Linear Real Arithmetic

Reference : Introduction to Neural Network Verification by Aws Albarghouthi

Decision Procedure for Linear Real Arithmetic

Input: F =A_; /2, ¢;%; < b; where ¢, b; € R
Output: 3x € R™ such that x & F?

Solution based on Simplex Algorithm [Dantzig 1947]
Simplex solves
max ;2 a;x; subject to
l 1 Z:]mlcl] Ji < b
Our focus will be on finding any solution x € R™ that satisfies F

Decision Procedure for Linear Real Arithmetic

Input: F =A_; /2, ¢;%; < b; where ¢, b; € R
Output: 3 a model x € R™ such that x & F?

Simplex expects F to be expressed in the Simplex form, which is a
conjunction of

- Linear equalities: 2, ¢;x; = 0
- Bounds:l; < x; < u

Transforming to Simplex Form

Consider the i*" inequality in F: 22, ¢;;x; < b;
Rewrite this as:

Si = ZjZ1CijXj A

S; < b;

s; is called a slack variable

Putting together all the rewritten conjuncts we get Fs

Proposition.
1. Any model of Fs is a model of F, disregarding the assignments to the slack variables.
2. If F5 is UNSAT then F is UNSAT.

Simplex (Informal)

ldea. Simultaneously try to find a model or a
proof of UNSAT

Start with some model (or valuation) that
satisfies all linear equalities (say, x; = 0, Vi)

In each iteration, pick a bound that is not
satisfied and modify the model to satisfy the
bound OR discover that the formula is
UNSAT

—2X Y= 2

~A0x 4 = ~5

Xg={(x~ 0,y ~ 0)
Xp\unsat —2x +y = 2
x1=(xm~ -1,y 0)
xq{\unsatx +y =0

Xy = <x|—>—%,yl—>1>|=F

Variable naming and ordering for Simplex

The input formula Fs (after rewriting) has two types of variables

e Basic variables appear on the LHS of an equality; initially these are the slack variables
* Non-basic variables all others

In each iteration, some basic variable becomes non-basic

We fix an arbitrary total ordering on variables x4, ..., x,

For a basic variable x; and non-basic variable x; we denote by c;; the coefficient of x; in
the definition of x;, i.e.,

Xi = '-'+Cij Xj+

The upper and lower bounds of x; are called u; and [; (possibly co, —0)

Simplex (Formal) 1

The algorithm maintains two invariants

1. The model x always satisfies the equalities; bounds may be violated.
Why is this invariant satisfied by our initialization of all 0s?

2. The bounds of all non-basic variables are all satisfied.
Why is this invariant satisfied by our initialization?

Simplex Algorithm: DP for LRA

—ym ;
Xi = ZkeNCikXk,J € N

Input: A formula Fg in Simplex form Pivoting x; and Xj rewrites Xj as
Output: x = Fg or UNSAT basic variable

* = % 2) Xi = CijXj + Tyen\(jyCik Xk
while true do X; " Cik

if x = Fg then return x Xj = ——+ Zrem\(j} Xk

Let x; be the first basic variable s.t. x [x; < 1; or x [x; > y; Cij Cij

if x [x; <] then

l._ .
X [xj = x[xj+ﬂ

else

ui—x[x;

X|x;j= X|x;+
Py =y +
Pivot x; and x;

Simplex Algorithm: DP for LRA

Input: A formula Fg in Simplex form
Output: x = Fg or UNSAT
x = (x; » 0)
while true do
if x = Fg then return x
Let x; be the first basic variable s.t. x [x; <l or x [x; > y;
if x [x; <] then
Let x; be the first non-basic variable s.t.
(X[Xj < u]' N Cij > 0) VvV (X[Xj > l] N Cij < 0)
If no such x; exists then return UNSAT
li—x[x;

Xlx; = x|x; +
Py = 0y + 47

else Let Xj be the first non-basic variable s.t.
(X[Xj > l]/\ Cij > O)V(.X[Xj < U,j/\ Cij < O)
If no such X; exists then return UNSAT

u;—x[x;

X[xj= x[x;+ o

Pivot x; and x;

— ym ;
Xi = 2genCikXk,] € N
Pivoting x; and x; rewrites X; as
basic variable
— m
Xi = CijXj + Zrem\(j)CikXk
Xi m Cik

Xj = ——+ Zpenvuin — Xk

Example

x+y=0
—2x+y =2
—10x +y = —5

Rewritten in Simplex form

N
VIVIV I

Example continued

Variable ordering

X, Y,51,52,53

Initialization xg = (x » 0,y » 0,51 » 0,5, = 0,53 — 0)
X ¢ satisfies equalities, bounds of s; s; are satisfied

Pick the first variable x to fix the bound of s,

Since upper and lower bounds of x are co and —oo it easily satisfies the blue

condition

To increase s, to 2 and satisfy its lowerbound we decrease x|x to -1
x1=(xm~—-1,y~»0,s; > —1,5, » 2,53 » 10)

Pivot s, with x

x = —0.5s, + 0.5y
sy = —0.5s, + 1.5y
S3 = 55, — 4y

s; =0

S3 = —5

—0o < x <™

Example continued 2

x1=(x»-1,y~0,5; »—1,5, » 2,55 » 10)

All equalities are still satisfied (invariant)

The only basic variable not satisfying its bounds is now s,
The first non-basic variable we can tweak is y

Setting y=1 to satisfy the lowerbound of s1 we get
Xy ={(x—» —05,y-1,5;, »0.5,s, » 2,53 = 6)

Pivot s; with y
Xy F FS

x = —0.5s, + 0.5y
s; = —0.5s, + 1.5y
S3 = 585, — 4y

s =0

S3 = —5

—0o < x <

2 1
y = 551 +§SZ

X=4+=S—=S5
37 377

Sy = 2

s1 =0

S3 = —5

—0 < x <

Why is simplex correct?

* Why does it terminate?

Because we always looks for the first variable violating the bounds. There is a
property (Bland’s rule) that ensures that we never revisit the same set of basic
and non-basic variables.

 Why does it give the right answer (sound)?

* |f it returns x does it satisfyx = F?
This follows from the condition before return x
* |f it returns UNSAT is F really unsatisfiable?

Unsatisfiable example

Si=x+Yy Non-basic variables satisfy their bounds

Sy, = —X — 2y (invariant) andsos; = 0,s, = 2

S3= —x+Yy If s, violates the bound then

s =0 S3 = —3s1 —25, <1

S, = 2 We can make s; bigger by decreasing s; and
s3=1 s, but the at most

Consider a Simplex execution in which there s3= —3.0-22=-4

are two pivots: which is still less than 1 and Simplex concludes
Pivot 1: s; with x that the formula is UNSAT.

X=5-"Y

S, =—S51—Yy The blue conditions for choosing x; encodes
S3 = —Ss1 + 2y this condition.

Pivot 2: 5, with y
X =281 +5,
Yy=—81"—"52
S3 == _351 - 252

Summary and Takeaways

e Satisfiability modulo theory solvers use theory solvers and DPLL
to check satisfiability of formulas in other theories

 DPLL takes care of disjunctions
* Theory solvers take care of conjunctions

* Simplex or more generally Linear programming (LP) solvers is a
theory solver for linear real arithmetic

e Simplex algorithm solves LP by incrementally fixing the bounds of basic
variables

* Next time Reluplex

