
Satisfiability modulo theories Part 2
Neural Theory Solvers

Verifying cyberphysical systems

Sayan Mitra
mitras@illinois.edu

mailto:mitras@illinois.edu


Today

• SMT
• Decision procedure for Linear Real Arithmetic

Simplex Algorithm [Dantzig 1947]

• Next week: Verification of Neural Networks
Reluplex [Katz et al 2017]



References

• Lectures on SMT from Clark Barrett
• Book: Introduction to Neural Network Verification by Aws 

Albarghouthi
• Book: Decision Procedures by Daniel Kroening and Ofer Strichman



Theory solvers/decision 
procedures

Arithmetic 
Bitvectors

DPLL Difference logic 
…

Uninterpreted 
functions

Core 

literals/formula in 
real arithmetic

solution or 
counterexample

boolean
skeleton of 

problem

assertions

SMT
𝜙 ≡ 𝑔 𝑎 = 𝑐 ∧ 𝑓 𝑔 𝑎 ≠ 𝑓 𝑐 ∨ 𝑔 𝑎 = 𝑑 ∧ 𝑐 ≠ 𝑑
Several approaches, lazy approach:
• Abstract 𝜙 to propositional form 
• Feed to DPLL
• Use theory decision procedure to refine propositional formula a guide SAT  



DPLLT: DPLL modulo theories

How can we extend DPLL to handle formulas over other theories like 
• Difference Logic (DL)
• Linear Real Arithmetic (LRA)
• Uninterpreted functions (UF)

Idea: Start with a Boolean abstraction (or skeleton) and 
incrementally add more theory information 
until we can conclusively say SAT or UNSAT 



Example: DPLLLRA

𝐹 ≡ 𝑥 ≤ 0 ∨ 𝑥 ≤ 10 ∧ (¬𝑥 ≤ 0)

Boolean abstraction: replace every unique linear inequality with a Boolean variable
𝐹! ≡ 𝑝 ∨ 𝑞 ∧ (¬𝑝)

where 𝑝 abstracts 𝑥 ≤ 0 and 𝑞 abstracts 𝑥 ≤ 10

Abstraction because information is lost

The relationship 𝑥 > 10 ⇒ 𝑥 > 0, i.e., ¬𝑞 ⇒ ¬𝑝 is lost in 𝐹!
Notation. 𝐹! " maps 𝐹! back to theory 𝑇, i.e., 𝐹! " = 𝐹.

Proposition. If 𝐹! is UNSAT then 𝐹 is UNSAT, but the converse does not hold, i.e., 𝐹! is SAT does not 
mean that 𝐹 is SAT. 

Example. 𝐹# ≡ 𝑥 ≤ 0 ∧ 𝑥 ≥ 10 is clearly UNSAT, however 𝐹#! ≡ 𝑝 ∧ 𝑞 is SAT. 



Lazy DPLLT Algorithm using a Decision Procedure 𝑇()

Input: A formula 𝐹 in CNF form over theory T
Output: 𝐼 ⊨ 𝐹 or UNSAT
Let 𝐹! be the abstraction of 𝐹
while true do

if DPLL(𝐹!) is unsat then return UNSAT
else

Let 𝐼 be the model returned by 𝐷𝑃𝐿𝐿
Assume 𝐼 is represented as a formula
if 𝑇(𝐼") is sat then return SAT and the model returned by 𝑇()
else 𝐹! ≔ 𝐹! ∧ ¬𝐼

Theory solvers/decision 
procedures 𝑇()

Arithmetic 

Bitvectors

DPLL Difference 
logic …
Uninterprete
d functions

Core 

𝐼!

𝐹"

UNSAT
SAT, 𝐼

UNSAT
SAT,𝑚



• 𝜙 ≡ 𝑔 𝑎 = 𝑐 ∧ 𝑓 𝑔 𝑎 ≠ 𝑓 𝑐 ∨ 𝑔 𝑎 = 𝑑 ∧ 𝑐 ≠ 𝑑

1 <2 3 .4
• send 𝜙" ≡ {1, <2 ∨ 3, .4 } to DPLL
• DPLL returns SAT with model 𝐼:{1, <2, .4 } 
• UF solver concretizes 𝐼#$ ≡ 𝑔 𝑎 = 𝑐 , 𝑓 𝑔 𝑎 ≠ 𝑓 𝑐 , 𝑐 ≠ 𝑑
• UF checks 𝐼#$ as UNSAT
• send 𝜙" ∧ ¬𝐼: {1, <2 ∨ 3, .4 , <1 ∨ 2 ∨ 4 } to DPLL; this is a new fact learned by DPLL
• DPLL returns model 𝐼′: {1, 2, 3, .4 } 
• UF solver concretizes 𝐼%#$ and finds this to be UNSAT
• send 𝜙" ∧ ¬𝐼 ∧ ¬𝐼′: {1, <2 ∨ 3, .4 , .1 ∨ 2 ∨ 4, .1 ∨ .2 ∨ .3 ∨ 4 } to DPLL; another fact
• returns UNSAT

Theory solvers/decision 
procedures 𝑇()

Arithmetic 
Bitvectors

DPLL Difference 
logic …
Uninterprete
d functions

Core 

𝐼!

𝐹"

UNSAT
SAT, 𝐼



Linear Real Arithmetic

Reference : Introduction to Neural Network Verification by Aws Albarghouthi



Decision Procedure for Linear Real Arithmetic

Input: 𝐹 ≡∧?@AB ΣC@AD 𝑐?C𝑥C ≤ 𝑏? where 𝑐?C , 𝑏? ∈ ℝ
Output: ∃𝒙 ∈ ℝD such that 𝒙 ⊨ 𝐹?

Solution based on Simplex Algorithm [Dantzig 1947]
Simplex solves 
max ΣC@AD 𝑎C𝑥C subject to
∧?@AB ΣC@AD 𝑐?C𝑥C ≤ 𝑏?
Our focus will be on finding any solution 𝒙 ∈ ℝD that satisfies 𝐹



Decision Procedure for Linear Real Arithmetic

Input: 𝐹 ≡∧?@AB ΣC@AD 𝑐?C𝑥C ≤ 𝑏? where 𝑐?C , 𝑏? ∈ ℝ
Output: ∃ a model 𝒙 ∈ ℝD such that 𝒙 ⊨ 𝐹?

Simplex expects 𝐹 to be expressed in the Simplex form, which is a 
conjunction of
- Linear equalities: Σ?@AD 𝑐?𝑥? = 0
- Bounds:lE ≤ 𝑥? ≤ 𝑢?



Transforming to Simplex Form

Consider the 𝑖!" inequality in 𝐹: Σ#$%& 𝑐'#𝑥# ≤ 𝑏'
Rewrite this as:
𝑠' = Σ#$%& 𝑐'#𝑥# ∧
𝑠' ≤ 𝑏'
𝑠' is called a slack variable
Putting together all the rewritten conjuncts we get 𝐹(

Proposition. 
1. Any model of 𝐹( is a model of 𝐹, disregarding the assignments to the slack variables. 
2. If 𝐹( is UNSAT then 𝐹 is UNSAT.



Simplex (Informal)

Idea. Simultaneously try to find a model or a 
proof of UNSAT

Start with some model (or valuation) that 
satisfies all linear equalities (say, 𝑥' = 0, ∀𝑖)

In each iteration, pick a bound that is not 
satisfied and modify the model to satisfy the 
bound OR discover that the formula is 
UNSAT

𝒙𝟎 = ⟨𝑥 ↦ 0, 𝑦 ↦ 0⟩
𝒙𝟎\unsat − 2𝑥 + 𝑦 ≥ 2
𝒙𝟏 = ⟨𝑥 ↦ −1, 𝑦 ↦ 0⟩
𝒙𝟏\unsat 𝑥 + 𝑦 ≥ 0

𝒙𝟐 = 𝑥 ↦ − )
* , 𝑦 ↦ 1 ⊨ 𝐹



Variable naming and ordering for Simplex

The input formula 𝐹( (after rewriting) has two types of variables

• Basic variables appear on the LHS of an equality; initially these are the slack variables

• Non-basic variables all others

In each iteration, some basic variable becomes non-basic

We fix an arbitrary total ordering on variables 𝑥%, … , 𝑥)
For a basic variable 𝑥' and non-basic variable 𝑥# we denote by 𝑐'# the coefficient of 𝑥# in 
the definition of 𝑥', i.e.,
𝑥' = …+ 𝑐'# 𝑥# + …

The upper and lower bounds of 𝑥' are called 𝑢' and 𝑙' (possibly ∞,−∞)



Simplex (Formal) 1

The algorithm maintains two invariants
1. The model 𝒙 always satisfies the equalities; bounds may be violated. 

Why is this invariant satisfied by our initialization of all 0s?
2. The bounds of all non-basic variables are all satisfied.

Why is this invariant satisfied by our initialization?



Simplex Algorithm: DP for LRA
Input: A formula 𝐹$ in Simplex form
Output: 𝒙 ⊨ 𝐹$ or UNSAT
𝒙 ≔ ⟨𝑥% ↦ 0⟩
while true do
if 𝒙 ⊨ 𝐹$ then return 𝒙
Let 𝑥% be the first basic variable s.t. 𝒙 ⌈𝑥% < l& or 𝒙 ⌈𝑥% > u&
if 𝒙 ⌈𝑥% < l& then

Let 𝑥' be the first non-basic variable s.t.
(𝒙 𝑥' < 𝑢' ∧ 𝑐%' > 0 ∨ (𝒙⌈𝑥' > 𝑙' ∧ 𝑐%' < 0)
If no such 𝑥' exists then return UNSAT

𝒙 ⌈𝑥' ≔ 𝒙 ⌈𝑥' +
(!)𝒙⌈,!
-!"

else Let 𝑥' be the first non-basic variable s.t.
(𝒙 𝑥' > 𝑙' ∧ 𝑐%' > 0 ∨ (𝒙⌈𝑥' < 𝑢' ∧ 𝑐%' < 0)
If no such 𝑥' exists then return UNSAT

𝒙 ⌈𝑥' ≔ 𝒙 ⌈𝑥' +
.!)𝒙⌈,!
-!"

Pivot 𝑥% and 𝑥'

𝑥+ = Σ,∈./ 𝑐+,𝑥,, 𝑗 ∈ 𝑁
Pivoting 𝑥+ and 𝑥0 rewrites 𝑥0 as 
basic variable
𝑥+ = 𝑐+0𝑥0 + Σ,∈.\{0}

/ 𝑐+,𝑥,
𝑥0 = −

𝑥+
𝑐+0

+ Σ,∈.\{0}
/ 𝑐+,

𝑐+0
𝑥,



Simplex Algorithm: DP for LRA
Input: A formula 𝐹$ in Simplex form
Output: 𝒙 ⊨ 𝐹$ or UNSAT
𝒙 ≔ ⟨𝑥% ↦ 0⟩
while true do
if 𝒙 ⊨ 𝐹$ then return 𝒙
Let 𝑥% be the first basic variable s.t. 𝒙 ⌈𝑥% < l& or 𝒙 ⌈𝑥% > u&
if 𝒙 ⌈𝑥% < l& then

Let 𝑥' be the first non-basic variable s.t.
(𝒙 𝑥' < 𝑢' ∧ 𝑐%' > 0 ∨ (𝒙⌈𝑥' > 𝑙' ∧ 𝑐%' < 0)
If no such 𝑥' exists then return UNSAT

𝒙 ⌈𝑥' ≔ 𝒙 ⌈𝑥' +
(!)𝒙⌈,!
-!"

else Let 𝑥' be the first non-basic variable s.t.
(𝒙 𝑥' > 𝑙' ∧ 𝑐%' > 0 ∨ (𝒙⌈𝑥' < 𝑢' ∧ 𝑐%' < 0)
If no such 𝑥' exists then return UNSAT

𝒙 ⌈𝑥' ≔ 𝒙 ⌈𝑥' +
.!)𝒙⌈,!
-!"

Pivot 𝑥% and 𝑥'

𝑥+ = Σ,∈./ 𝑐+,𝑥,, 𝑗 ∈ 𝑁
Pivoting 𝑥+ and 𝑥0 rewrites 𝑥0 as 
basic variable
𝑥+ = 𝑐+0𝑥0 + Σ,∈.\{0}

/ 𝑐+,𝑥,
𝑥0 = −

𝑥+
𝑐+0

+ Σ,∈.\{0}
/ 𝑐+,

𝑐+0
𝑥,



Example

𝑥 + 𝑦 ≥ 0
−2𝑥 + 𝑦 ≥ 2
−10𝑥 + 𝑦 ≥ −5
Rewritten in Simplex form
𝑠A = 𝑥 + 𝑦
𝑠S = −2𝑥 + 𝑦
𝑠T = −10𝑥 + 𝑦
𝑠A ≥ 0
𝑠S ≥ 2
𝑠T ≥ −5



Example continued
Variable ordering
𝑥, 𝑦, 𝑠#, 𝑠$, 𝑠%
Initialization 𝒙𝟎 = ⟨𝑥 ↦ 0, 𝑦 ↦ 0, 𝑠# ↦ 0, 𝑠$ ↦ 0, 𝑠% ↦ 0⟩
𝒙𝟎 satisfies equalities, bounds of 𝑠# 𝑠% are satisfied
Pick the first variable 𝑥 to fix the bound of 𝑠$
Since upper and lower bounds of 𝑥 are ∞ and −∞ it easily satisfies the blue 
condition 
To increase 𝑠$ to 2 and satisfy its lowerbound we decrease 𝒙⌈𝑥 to -1
𝒙𝟏 = ⟨𝑥 ↦ −1, 𝑦 ↦ 0, 𝑠# ↦ −1, 𝑠$ ↦ 2, 𝑠% ↦ 10⟩
Pivot 𝑠$ with 𝑥

𝑠! = 𝑥 + 𝑦
𝑠" = −2𝑥 + 𝑦
𝑠# = −10𝑥 + 𝑦
𝑠! ≥ 0
𝑠" ≥ 2
𝑠# ≥ −5

𝑥 = −0.5𝑠" + 0.5𝑦
𝑠! = −0.5𝑠" + 1.5𝑦
𝑠# = 5𝑠" − 4𝑦
𝑠! ≥ 0
𝑠# ≥ −5
−∞ ≤ 𝑥 ≤ ∞



Example continued 2

𝒙𝟏 = ⟨𝑥 ↦ −1, 𝑦 ↦ 0, 𝑠A ↦ −1, 𝑠S ↦ 2, 𝑠T ↦ 10⟩
All equalities are still satisfied (invariant)
The only basic variable not satisfying its bounds is now sA
The first non-basic variable we can tweak is 𝑦
Setting y=1 to satisfy the lowerbound of s1 we get
𝒙𝟐 = ⟨𝑥 ↦ −0.5, 𝑦 ↦ 1, 𝑠A ↦ 0.5, 𝑠S ↦ 2, 𝑠T ↦ 6⟩
Pivot 𝑠A with 𝑦
𝒙𝟐 ⊨ 𝐹W

𝑥 = −0.5𝑠" + 0.5𝑦
𝑠! = −0.5𝑠" + 1.5𝑦
𝑠# = 5𝑠" − 4𝑦
𝑠! ≥ 0
𝑠# ≥ −5
−∞ ≤ 𝑥 ≤ ∞

𝑦 =
2
3 𝑠! +

1
3 𝑠"

𝑥 = +
1
3 𝑠! −

1
3 𝑠"

𝑠" ≥ 2
𝑠! ≥ 0
𝑠# ≥ −5
−∞ ≤ 𝑥 ≤ ∞



Why is simplex correct?

• Why does it terminate?
Because we always looks for the first variable violating the bounds. There is a
property (Bland’s rule) that ensures that we never revisit the same set of basic 
and non-basic variables.

• Why does it give the right answer (sound)?
• If it returns 𝒙 does it satisfy 𝒙 ⊨ 𝐹?	

This follows from the condition before return 𝒙
• If it returns UNSAT is 𝐹 really unsatisfiable?



Unsatisfiable example
𝑠! = 𝑥 + 𝑦
𝑠" = −𝑥 − 2𝑦
𝑠# = −𝑥 + 𝑦
𝑠! ≥ 0
𝑠" ≥ 2
𝑠# ≥ 1
Consider a Simplex execution in which there 
are two pivots:
Pivot 1: 𝑠! with 𝑥
𝑥 = 𝑠! − 𝑦
𝑠" = −𝑠! − 𝑦
𝑠# = −𝑠! + 2𝑦
Pivot 2: 𝑠" with 𝑦
𝑥 = 2𝑠! + 𝑠"
𝑦 = −𝑠! − 𝑠"
𝑠# = −3𝑠! − 2𝑠"

Non-basic variables satisfy their bounds 
(invariant) and so 𝑠! ≥ 0, 𝑠" ≥ 2
If 𝑠" violates the bound then
𝑠# = −3𝑠! − 2𝑠" < 1
We can make 𝑠# bigger by decreasing 𝑠! and 
𝑠" but the at most 
𝑠# = −3.0 − 2.2 = −4
which is still less than 1 and Simplex concludes 
that the formula is UNSAT. 

The blue conditions for choosing 𝑥$ encodes 
this condition. 



Summary and Takeaways

• Satisfiability modulo theory solvers use theory solvers and DPLL 
to check satisfiability of formulas in other theories
• DPLL takes care of disjunctions
• Theory solvers take care of conjunctions

• Simplex or more generally Linear programming (LP) solvers is a 
theory solver for linear real arithmetic
• Simplex algorithm solves LP by incrementally fixing the bounds of basic 

variables

• Next time Reluplex


