
Satisfiability
Verifying cyberphysical systems

Sayan Mitra
mitras@illinois.edu

Some of the slides for this lecture are adapted from slides by Clark
Barrett

mailto:mitras@illinois.edu

Readings

• Chapter 7
• Appendix C

Outline
• Propositional Satisfiability problem
• Normal forms
• DPLL algorithm

Boolean satisfiability problem
Given a well-formed formula in propositional logic, determine whether
there exists a satisfying solution

Example: 𝛼 𝑥#, 𝑥%, … , 𝑥' ≡ 𝑥# ∧ 𝑥% ∨ 𝑥+ ∧ 𝑥# ∧ ¬𝑥+ ∨ 𝑥%
Set of variables: 𝑋 = {𝑥#, 𝑥%, … , 𝑥'},

Each variable is Boolean: 𝑡𝑦𝑝𝑒 𝑥5 = 0,1

Formula 𝛼 is well-formed if it uses propositional operators, and ∧, or ∨, not ¬, iff ↔ etc., properly

Recall, a valuation x of 𝑋 maps each 𝑥5 to a value 0 or 1

A valuation x of 𝑋 satisfies 𝛼 is each each 𝑥5 in 𝛼 replaced by the corresponding value in x evaluates
to true. We write this as 𝒙 ⊨ 𝛼

Otherwise, we write 𝒙 ⊭ 𝛼

Example: with 𝒙 ≡ ⟨𝑥# ↦ 1, 𝑥% ↦ 1, 𝑥+ ↦ 0⟩; 𝒙 ⊨ 𝛼

Boolean satisfiability problem (SAT)
Given a well-formed formula in propositional logic, determine whether there exists a satisfying
solution

Restatement: ∃𝒙 ∈ 𝑣𝑎𝑙 𝑋 : 𝒙 ⊨ 𝛼?

If the answer is ”No” then 𝛼 is said to be unsatisfiable

Aside. If ∀𝒙 ∈ 𝑣𝑎𝑙 𝑋 : 𝒙 ⊨ 𝛼 then 𝛼 is said to be valid or a tautology

If α is valid then ¬α is unsatisfiable

𝛼 and 𝛼′ are tautologically equivalent if they have the same truth tables

∀𝒙 ∈ 𝑣𝑎𝑙 𝑋 : 𝒙 ⊨ 𝛼 ↔ 𝒙 ⊨ 𝛼I

What is a naïve method for solving SAT?

What is the complexity of this approach? How many evaluations of 𝛼 𝑥#, 𝑥%, … , 𝑥' ?

Slide by Sayan Mitra using pictures
from Wikipedia and cartoonstock.com

I Don’t Get No
Satisfaction,
but I try, try,

try,…

I can prove
why.

Prof.
Cook

Stephen A. Cook:
The Complexity of Theorem-Proving Procedures. STOC 1971: 151-158

https://dblp.uni-trier.de/db/conf/stoc/stoc71.html

SAT is NP-complete
SAT was the first problem shown to be NP-complete [Cook 71]

2-SAT can be solved in polynomial time (Exercise)
(Read definition of NP: Nondeterministic Polytime in Appendix C)
This has real implications
1. Essentially we don’t know better than the naïve algorithm
2. A solver for SAT can be used to solve any other problem in the

NP class with only polytime slowdown. i.e., makes a lot of sense
to build SAT solvers

3. SAT/SMT solving is the cornerstone of many verification
procedures

Stephen Cook, The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on theory of computing. STOC ‘71.

Details

We will assume 𝛼 to be in conjunctive normal form (CNF)
literals: variable or its negation, e.g., 𝑥+, ¬𝑥+
clause: disjunction (or) of literals, e.g., 𝑥# ∨ 𝑥% ∨ ¬𝑥+
CNF formula: conjunction (and) of clauses,

e.g., 𝑥# ∨ 𝑥% ∨ ¬𝑥+ ∧ ¬𝑥% ∨ 𝑥#
A variable may appear positively or negatively in a clause

Logic and circuits

Repeated subexpression is inefficient
Solution: rename 𝐴 ∧ 𝐵 ↔ 𝐸
𝐼I ≡ 𝐷 ∧ 𝐸 ∨ ¬𝐶 ∧ 𝐸 ∧ 𝐴 ∧ 𝐵 ↔ 𝐸
𝐼 and 𝐼′ are not tautologically equivalent
𝐶 = 0, 𝐴 = 𝐵 = 1, 𝐸 = 0 satisfies 𝐼
But they are equisatisfiable, i.e., 𝐼 is satisfiable iff 𝐼′ is also satisfiable

A

B

D

C

I

𝐼 ≡ 𝐷 ∧ 𝐴 ∧ 𝐵 ∨ ¬𝐶 ∧ 𝐴 ∧ 𝐵

Converting to CNF

• View the formula as a graph
• Give new names (variables) to non-leafs
• Relate the inputs and the outputs of the nonleafs and add this as a

new clause
• Take conjunction of all of this

Converting to CNF
• 𝐹 ↔ ¬𝐶

• 𝐹 → ¬𝐶 ∧ ¬𝐶 → 𝐹
• ¬𝐹 ∨ 𝐶 ∧ (¬𝐶 ∨ 𝐹)

• 𝐴 ∧ 𝐵 ↔ 𝐸
• 𝐴 ∧ 𝐵 → 𝐸 ∧ 𝐸 → 𝐴 ∧ 𝐵
• ¬ 𝐴 ∧ 𝐵 ∨ 𝐸 ∧ ¬ 𝐸 ∨ 𝐴 ∧ 𝐵
• ¬𝐴 ∨ ¬𝐵 ∨ 𝐸 ∧ ¬ 𝐸 ∨ 𝐴) ∧ ¬𝐸 ∨ 𝐵

• 𝐺 ∨ 𝐻 ↔ 𝐼
• 𝐺 ∨ 𝐻 → 𝐼 ∧ 𝐼 → 𝐺 ∨ 𝐻
• ¬𝐺 ∧ ¬𝐻 ∨ 𝐼 ∧ ¬𝐼 ∨ 𝐺 ∨ 𝐻
• ¬𝐺 ∨ 𝐼) ∧ (¬𝐻 ∨ 𝐼 ∧ ¬𝐼 ∨ 𝐺 ∨ 𝐻

• 𝐷 ∧ 𝐸 ↔ 𝐺
• ¬𝐷 ∨ ¬𝐸 ∨ 𝐺 ∧ ¬ 𝐺 ∨ 𝐷) ∧ ¬𝐺 ∨ 𝐸

• 𝐹 ∧ 𝐸 ↔ 𝐻
• ¬𝐹 ∨ ¬𝐸 ∨ 𝐻 ∧ ¬ 𝐻 ∨ 𝐹) ∧ ¬𝐻 ∨ 𝐸

A

B

D

I

C

E

F

G

H

Standard representations of CNF

• ¬𝐴 ∨ ¬𝐵 ∨ 𝐸 ∧ ¬ 𝐸 ∨ 𝐴) ∧ ¬𝐸 ∨ 𝐵
• 𝐴I + 𝐵I + 𝐸 (𝐸I+𝐴) 𝐸I + 𝐵
• −1 − 2 5 −5 1 −5 2 DIMACS

• SMTLib

Davis Putnam Logemann Loveland Algorithm
(DPLL) 1962
Transform the given formula 𝛼 by applying a sequence of satisfiability
preserving rules

If final result has an empty clause then unsatisfiable
if final result has no clauses then the formula is satisfiable

Davis Putnam Algorithm (DP) 1960

Rule 1. Unit propagation
Rule 2. Pure literal
Rule 3. Resolution

DP 1960

Rule 1. Unit propagation
A clause has a single literal

𝛼 ≡ ⋯∧⋯∧ 𝑝 ∧ ⋯∧⋯
What choice do we really have?

𝛼 ≡ ⋯∧ 𝑥# ∨ ¬𝑝 ∨ 𝑥% ∧ 𝑝 ∧ ⋯∧ ¬𝑥+ ∨ ¬𝑝 ∨ 𝑥# …

DP 1960

Rule 1. Unit propagation
A clause has a single literal

𝛼 ≡ ⋯∧⋯∧ 𝑝 ∧ ⋯∧⋯
What choice do we really have?

𝛼I ≡ ⋯∧ 𝑥# ∨ 𝑥% ∧ ⋯∧ ¬𝑥+ ∨ 𝑥# …

𝛼 and 𝛼′ are equisatisfiable

Davis Putnam Logemann Loveland Algorithm
(DPLL) 1962
Rule 1. Unit propagation
Rule 2. Pure literal
A literal appears only positively (or negatively) in 𝛼

𝛼 ≡ ⋯∧ 𝑥# ∨ ¬𝑝 ∨ 𝑥% ∧ (𝑥[∨ ¬𝑝) ∧ ⋯∧ ¬𝑥+ ∨ ¬𝑝 ∨ 𝑥# …
𝑝 does not appear anywhere

Makes sense to set 𝑝 = 0 and remove all occurrences of ¬𝑝

Davis Putnam Logemann Loveland Algorithm
(DPLL) 1962
Rule 1. Unit propagation
Rule 2. Pure literal
A literal appears only positively (or negatively) in 𝛼

𝛼 ≡ ⋯∧ 𝑥# ∨ ¬𝑝 ∨ 𝑥% ∧ (𝑥[∨ ¬𝑝) ∧ ⋯∧ ¬𝑥+ ∨ 𝑥# …
𝑝 does not appear anywhere

Makes sense to set 𝑝 = 0 and remove all clauses in which ¬𝑝 occurs

𝛼I ≡ ⋯∧⋯∧⋯∧ ¬𝑥+ ∨ 𝑥# … [𝑝 = 0]

𝛼 and 𝛼′ are equisatisfiable

Davis Putnam Algorithm (DP) 1960
Rule 1. Unit propagation

Rule 2. Pure literal

Rule 3. Resolution

Choose a literal 𝑝 that appears with both polarity in 𝛼. Suppose (ℓ# ∨ ℓ% ∨ ⋯∨ 𝑝) be a clause in
which 𝑝 appears positively, and (𝑘# ∨ 𝑘% ∨ ⋯∨ ¬𝑝) be a clause in which 𝑝 appears negatively

Then the resolved clause is (ℓ# ∨ ℓ% ∨ ⋯∨ 𝑘# ∨ 𝑘% ∨ ⋯𝑘_)

Pairwise, resolve each clause in which 𝑝 appears positively with a clause in which 𝑝 appears
negatively, and take the conjunction of all the results

Why is the result equisatisfiable?

What is the size of the resulting formula?

DPLL modifies resolution in DP with recursive
DFS rule
Rule 1. Unit propagation

Rule 2. Pure literal

Rule 3’. Let Δ be the current set of clauses. Choose a literal 𝑝 in Δ.

Check satisfiability of Δ ∪ 𝑝 (guessing 𝑝 = 1)

If satisfiable then return True else

return result of checking satisfiability of Δ ∪ ¬𝑝
This is essentially a depth first search

A simple greedy algorithm for SAT (GSAT)
Input: Set of clauses C over X, parameters max-flips, max-tires

Output: A satisfying assignment for C, or ∅ if none found

for i = 1 to max-tries

𝑣 := random truth assignment in val(X)

for j = 1 to max-flips

if 𝑣 ⊨ 𝐶 then return 𝑣
𝑝 ≔ variable in C such that flipping its value gives the largest
increase in the number of clauses of C that are satisfied by 𝑣
𝑣 ≔ 𝑣 with the assignment to 𝑝 flipped

return ∅

Experimental
results on SAT
solving

From Slides of Clark Barrett’s
lecture.
Summer School on Verification
Technology, Systems & Applications,
September 17, 2008 – p. 42/98

Stålmarck’s algorithm
Breadth first search instead of depth-first

Given a set of clauses Δ and any basic deduction algorithm R, the
dilemma rule performs a case split on some literal 𝑝 by considering the
new sets of clauses Δ ∪ { ¬ 𝑝 } and Δ ∪ { 𝑝 } .

R is applied to each of these to get Δd and Δ# respectively

The original Δ is augmented with Δd ∩ Δ#

Abstract DPLL
• Abstract DPLL uses states and transitions to model the progress of

the algorithm
• Most states are of the form 𝑀||𝐹 where
• 𝑀 is a sequence of annotated literals denoting partial truth assignment
• 𝐹 is the CNF formula being checked, represented as a set of clauses

• Initial state: ∅||𝐹, where 𝐹 is to be checked for satisfiability
• Transitions between states are defined by a set of conditional

transition rules
• Final state
• Fail special state, if 𝐹 is unsatisfiable, or
• 𝑀||𝐺, where 𝐺 is CNF formula equisatisfiable with original 𝐹 and 𝑀 ⊨ 𝐺

• We will write 𝑀 ⊨ 𝐶 to mean that every truth assignment 𝑣, 𝑣 𝑀 =
𝑇𝑟𝑢𝑒 implies 𝑣 𝐶 = 𝑇𝑟𝑢𝑒

Abstract DPLL and Abstract DPLL Modulo Theories Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli, 2006.

Abstract DPLL

UnitProp: 𝑀||𝐹, 𝐶 ∨ ℓ → 𝑀 ℓ||𝐹, 𝐶 ∨ ℓ
If k 𝑀 ⊨ ¬𝐶
ℓ 𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 𝑀

PureLiteral: 𝑀||𝐹 → 𝑀 ℓ||𝐹
If q

ℓ 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑠𝑜𝑚𝑒 𝑐𝑙𝑎𝑢𝑠𝑒 𝑜𝑓 𝐹
¬ℓ 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑛𝑜 𝑐𝑙𝑎𝑢𝑠𝑒 𝑜𝑓 𝐹

ℓ 𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 𝑀

Decide: 𝑀||𝐹 → 𝑀 ℓu||𝐹
If kℓ 𝑜𝑟 ¬ℓ 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑎 𝑐𝑙𝑎𝑢𝑠𝑒 𝑜𝑓 𝐹ℓ 𝑖𝑠 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 𝑀

Backtrack: 𝑀 ℓu 𝑁 ||𝐹, 𝐶 → 𝑀 ¬ℓ||𝐹, 𝐶
If k 𝑀 ℓu 𝑁 ⊨ ¬𝐶
𝑁 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑛𝑜 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠

Fail: 𝑀||𝐹, 𝐶 → 𝑓𝑎𝑖𝑙
If k 𝑀 ⊨ ¬𝐶
𝑀 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑛𝑜 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠

Abstract DPLL and Abstract DPLL Modulo Theories Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli, 2006.

An Example: Abstract DPLL
𝜙||1 ∨ x2 x1 ∨ x2 2 ∨ 3 x3 ∨ 2 1 ∨ 4
⇒ (PureLiteral)
4||1 ∨ x2 x1 ∨ x2 2 ∨ 3 x3 ∨ 2 1 ∨ 4
⇒ (Decide)
4 1d ||1 ∨ x2 x1 ∨ x2 2 ∨ 3 x3 ∨ 2 1 ∨ 4
⇒ (UnitProp)
4 1d x2 ||1 ∨ x2. x1 ∨ x2 2 ∨ 3 x3 ∨ 2 1 ∨ 4
⇒ (UnitProp)
4 1d x2 3 ||1 ∨ x2. x1 ∨ x2 2 ∨ 3 x3 ∨ 2 1 ∨ 4
4 1d x2 3 ||1 ∨ x2. x1 ∨ x2 2 ∨ 3 x3 ∨ 2 1 ∨ 4
⇒ (Backtrack)
4 x1 ||1 ∨ x2 x1 ∨ x2 2 ∨ 3 x3 ∨ 2 1 ∨ 4
⇒ (UnitProp)
4 x1 x2||1 ∨ x2 x1 ∨ x2 2 ∨ 3 x3 ∨ 2 1 ∨ 4
⇒ (UnitProp)
4 x1 x2 3 ||1 ∨ x2 x1 ∨ x2 2 ∨ 3 x3 ∨ 2 1 ∨ 4 => Fail

Assignments

• HW1 (due Sept 17th)
• Install Z3

• Give a 3 sentence pitch for your project in next class

• Next: SMT

