Satisfiability

Verifying cyberphysical systems

Sayan Mitra

mitras@illinois.edu

Some of the slides for this lecture are adapted from slides by Clark Barrett

Readings

- Chapter 7
- Appendix C

Outline

- Propositional Satisfiability problem
- Normal forms
- DPLL algorithm

Boolean satisfiability problem

Given a *well-formed formula* in propositional logic, determine whether there exists a satisfying solution

Example: $\alpha(x_1, x_2, \dots, x_n) \equiv (x_1 \land x_2 \lor x_3) \land (x_1 \land \neg x_3 \lor x_2)$

Set of variables: $X = \{x_1, x_2, \dots, x_n\},\$

Each variable is Boolean: $type(x_i) = \{0,1\}$

Formula α is *well-formed* if it uses propositional operators, and \wedge , or \vee , not \neg , iff \leftrightarrow etc., properly

Recall, a valuation **x** of X maps each x_i to a value 0 or 1

A valuation **x** of *X* satisfies α is each each x_i in α replaced by the corresponding value in **x** evaluates to *true*. We write this as $x \models \alpha$

Otherwise, we write $x \not\models \alpha$

Example: with $x \equiv \langle x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 0 \rangle$; $x \models \alpha$

Boolean *satisfiability* problem (SAT)

Given a well-formed formula in propositional logic, determine whether there exists a satisfying solution

Restatement: $\exists x \in val(X): x \models \alpha$?

If the answer is "No" then α is said to be *unsatisfiable*

Aside. If $\forall x \in val(X)$: $x \models \alpha$ then α is said to be *valid or a tautology*

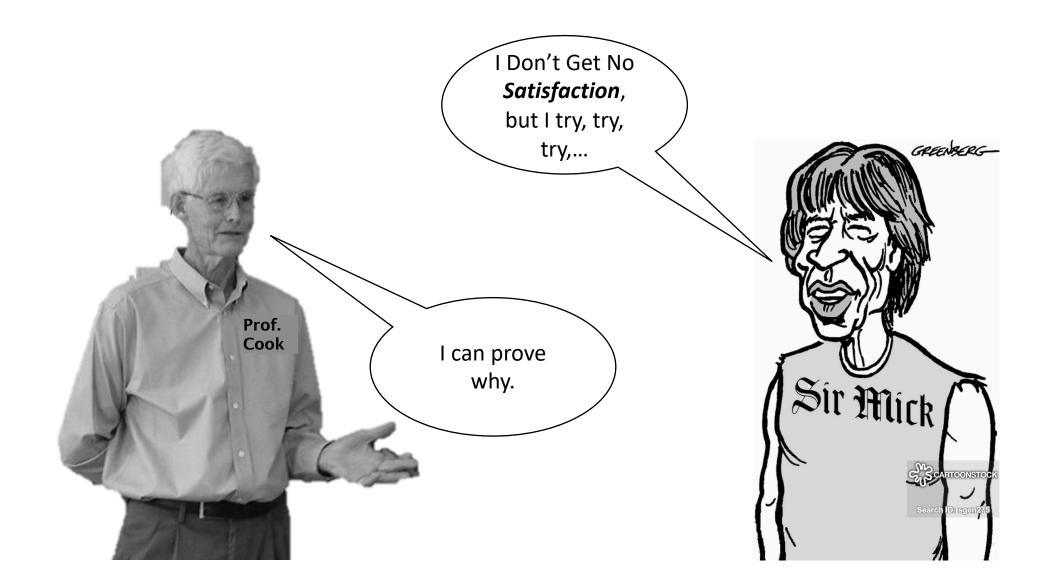
If α is valid then $\neg \alpha$ is unsatisfiable

 α and α' are *tautologically equivalent* if they have the same truth tables

 $\forall x \in val(X) : x \vDash \alpha \leftrightarrow x \vDash \alpha'$

What is a naïve method for solving SAT?

What is the complexity of this approach? How many evaluations of $\alpha(x_1, x_2, ..., x_n)$?



Stephen A. Cook: The Complexity of Theorem-Proving Procedures. <u>STOC 1971</u>: 151-158 Slide by Sayan Mitra using pictures from Wikipedia and cartoonstock.com

SAT is NP-complete

SAT was the first problem shown to be NP-complete [Cook 71]

2-SAT can be solved in polynomial time (Exercise)

(Read definition of NP: Nondeterministic Polytime in Appendix C)

This has real implications

- 1. Essentially we don't know better than the naïve algorithm
- 2. A solver for SAT can be used to solve any other problem in the NP class with only polytime slowdown. i.e., makes a lot of sense to build SAT solvers
- 3. SAT/SMT solving is the cornerstone of *many* verification procedures

Stephen Cook, The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on theory of computing. STOC '71.

Online SAT solvers [edit]

- \bullet BoolSAT Solves formulas in the DIMACS-CNF format or in a more
- Logictools @ Provides different solvers in javascript for learning, co
- minisat-in-your-browsere → Solves formulas in the DIMACS-CNF for
 SATRennesPAe → Solves formulas written in a user-friendly way. Ru

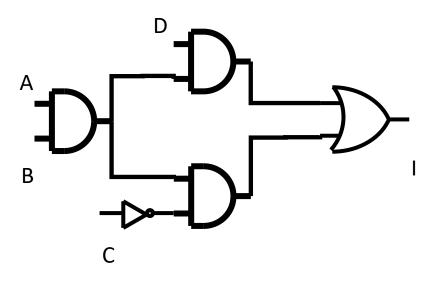
Offline SAT solvers [edit]

- MiniSAT & DIMACS-CNF format and OPB format for it's companior
- Lingeling № won a gold medal in a 2011 SAT competition.
 - PicoSAT & an earlier solver from the Lingeling group.
- Sat4j
 → DIMACS-CNF format. Java source code available
- Glucose r − DIMACS-CNF format.
- RSat won a gold medal in a 2007 SAT competition.
- \bullet UBCSAT $\ensuremath{ \mathbb{B}}$. Supports unweighted and weighted clauses, both in the
- CryptoMiniSat@ won a gold medal in a 2011 SAT competition. C++ MiniSat 2.0 core, PrecoSat ver 236, and Glucose into one package, i
- Spear
 − Supports bit-vector arithmetic. Can use the DIMACS-CNF
- HyperSAT @ Written to experiment with B-cubing search space solver from the developers of Spear.
- BASolver
- ArgoSAT

			SAT 2019 Ra	ce		
Organizers	Marijn Heule, Matt	i Järvisalo, Martin Suda				
Past Competitions						
			SAT 2018 Comp	etition		
Organizers	Marijn Heule, Matt	i Järvisalo, Martin Suda				
			SAT 2017 Comp	etition		
Organizers	Marijn Heule, Matt	Marijn Heule, Matti Järvisalo, Tomáš Balyo				
Slides	Slides used at SAT 2017					
Proceedings	Descriptions of the	Descriptions of the solvers and benchmarks				
Benchmarks	Available here					
Solvers	Available here					
	Gold	Silver Bronze	Gold		Silver	
	Cold	Agile Track	Cold		Main Track	
SAT+UNSAT	CaDiCaL Agile, CaDiCaL NoProof	Glu_VC Glucose 4.1	Maple LCM Dist, I MapleLRB LCM0 MapleLRB	ccRestart,	MapleCOMSPS LRB V MapleCOMSPS LRB	SIDS 2, VSIDS
		Parallel Track			No-Limit Track	
SAT+UNSAT	Syrup24, Syrup48	Plingeling Painless MapleCC	MSPS COMiniSATPS	Pulsar	MapleCOMPSPS LRB MapleCOMPSPS LRB	/SIDS 2
			SAT 2016 Compe	tition		
Organizers		Marijn Heule, Matti Järvisalo Tomáš Balyo				
Proceedings		Descriptions of the solvers and benchmarks				
Benchmarks	Available here					
Solvers	Available here					
		Silver	Bronze	Gold	Silver	B
	Gold					

Details

We will assume α to be in *conjunctive normal form (CNF) literals:* variable or its negation, e.g., x_3 , $\neg x_3$ *clause:* disjunction (or) of literals, e.g., $(x_1 \lor x_2 \lor \neg x_3)$ *CNF formula:* conjunction (and) of clauses, e.g., $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_1)$ A variable may appear *positively* or *negatively* in a clause Logic and circuits →→



 $I \equiv \left(D \land (A \land B) \right) \lor \left(\neg C \land (A \land B) \right)$

Repeated subexpression is inefficient

Solution: rename $(A \land B) \leftrightarrow E$ $I' \equiv (D \land E) \lor (\neg C \land E) \land ((A \land B) \leftrightarrow E)$

I and *I*' are **not** *tautologically equivalent*

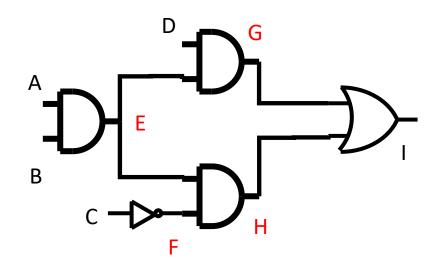
C = 0, A = B = 1, E = 0 satisfies I

But they are *equisatisfiable*, i.e., I is satisfiable iff I' is also satisfiable

Converting to CNF

- View the formula as a graph
- Give new names (variables) to non-leafs
- Relate the inputs and the outputs of the nonleafs and add this as a new clause
- Take conjunction of all of this

Converting to CNF



- $F \leftrightarrow \neg C$ • $F \rightarrow \neg C \land \neg C \rightarrow F$
 - $(\neg F \lor C) \land (\neg C \lor F)$
- $(A \land B) \leftrightarrow E$
 - $((A \land B) \to E) \land (E \to (A \land B))$
 - $(\neg (A \land B) \lor E) \land (\neg E \lor (A \land B))$
 - $(\neg A \lor \neg B \lor E) \land (\neg E \lor A) \land (\neg E \lor B))$
- $(G \lor H) \leftrightarrow I$
 - $((G \lor H) \to I) \land (I \to (G \lor H))$
 - $(\neg G \land \neg H \lor I) \land (\neg I \lor G \lor H)$
 - $(\neg G \lor I) \land (\neg H \lor I) \land (\neg I \lor G \lor H)$
- $(D \land E) \leftrightarrow G$
 - $(\neg D \lor \neg E \lor G) \land (\neg G \lor D) \land (\neg G \lor E)$
- $(F \land E) \leftrightarrow H$
 - $(\neg F \lor \neg E \lor H) \land (\neg H \lor F) \land (\neg H \lor E)$

Standard representations of CNF

- $(\neg A \lor \neg B \lor E) \land (\neg E \lor A) \land (\neg E \lor B))$
- (A' + B' + E)(E' + A)(E' + B)
- (-1 2 5)(-51)(-52) DIMACS
- SMTLib

Davis Putnam Logemann Loveland Algorithm (DPLL) 1962

Transform the given formula α by applying a sequence of satisfiability preserving rules

If final result has an empty clause then *unsatisfiable* if final result has no clauses then the formula is *satisfiable*

Davis Putnam Algorithm (DP) 1960

Rule 1. Unit propagation Rule 2. Pure literal Rule 3. Resolution



Rule 1. Unit propagation

A clause has a single literal

$$\alpha \equiv \cdots \land \cdots \land p \land \cdots \land \cdots$$

What choice do we really have?

$$\alpha \equiv \dots \land (x_1 \lor \neg p \lor x_2) \land p \land \dots \land (\neg x_3 \lor \neg p \lor x_1) \dots$$



Rule 1. Unit propagation

A clause has a single literal

$$\alpha \equiv \cdots \land \cdots \land p \land \cdots \land \cdots$$

What choice do we really have?

$$\alpha' \equiv \cdots \land (x_1 \lor x_2) \land \cdots \land (\neg x_3 \lor x_1) \dots$$

 α and α' are equisatisfiable

Davis Putnam Logemann Loveland Algorithm (DPLL) 1962

Rule 1. Unit propagation

Rule 2. Pure literal

A literal appears only positively (or negatively) in α

$$\alpha \equiv \dots \land (x_1 \lor \neg p \lor x_2) \land (x_4 \lor \neg p) \land \dots \land (\neg x_3 \lor \neg p \lor x_1) \dots$$

p does not appear anywhere

Makes sense to set p = 0 and remove all occurrences of $\neg p$

Davis Putnam Logemann Loveland Algorithm (DPLL) 1962

Rule 1. Unit propagation

Rule 2. Pure literal

A literal appears only positively (or negatively) in α

$$\alpha \equiv \dots \land (x_1 \lor \neg p \lor x_2) \land (x_4 \lor \neg p) \land \dots \land (\neg x_3 \lor x_1) \dots$$

p does not appear anywhere

Makes sense to set p = 0 and remove all clauses in which $\neg p$ occurs α and α' are equisatisfiable

$$\alpha' \equiv \cdots \wedge \cdots \wedge (\neg x_3 \lor x_1) \dots [p = 0]$$

Davis Putnam Algorithm (DP) 1960

Rule 1. Unit propagation

Rule 2. Pure literal

Rule 3. Resolution

Choose a literal p that appears with both polarity in α . Suppose $(\ell_1 \lor \ell_2 \lor \cdots \lor p)$ be a clause in which p appears positively, and $(k_1 \lor k_2 \lor \cdots \lor \neg p)$ be a clause in which p appears negatively

Then the resolved clause is $(\ell_1 \lor \ell_2 \lor \cdots \lor k_1 \lor k_2 \lor \cdots \lor k_m)$

Pairwise, resolve each clause in which p appears positively with a clause in which p appears negatively, and take the conjunction of all the results

Why is the result equisatisfiable?

What is the size of the resulting formula?

DPLL modifies resolution in DP with recursive DFS rule

Rule 1. Unit propagation

Rule 2. Pure literal

Rule 3'. Let Δ be the current set of clauses. Choose a literal p in Δ . Check satisfiability of $\Delta \cup \{p\}$ (guessing p = 1) If satisfiable then return True else return result of checking satisfiability of $\Delta \cup \{\neg p\}$ This is essentially a depth first search

A simple greedy algorithm for SAT (GSAT)

Input: Set of clauses C over X, parameters max-flips, max-tires

Output: A satisfying assignment for C, or Ø if none found

for i = 1 to *max-tries*

v := random truth assignment in val(X)

for j = 1 to *max-flips*

if $v \models C$ then return v

 $p \coloneqq$ variable in C such that flipping its value gives the largest increase in the number of clauses of C that are satisfied by v

 $v \coloneqq v$ with the assignment to p flipped

return Ø

Problem	tautology	dptaut	dplltaut
prime 3	0.00	0.00	0.00
prime 4	0.02	0.06	0.04
prime 9	18.94	2.98	0.51
prime 10	11.40	3.03	0.96
prime 11	28.11	2.98	0.51
prime 16	>1 hour	out of memory	9.15
prime 17	>1 hour	out of memory	3.87
ramsey 3 3 5	0.03	0.06	0.02
ramsey 3 3 6	5.13	8.28	0.31
mk_adder_test 3 2	>>1 hour	6.50	7.34
mk_adder_test 4 2	>>1 hour	22.95	46.86
mk_adder_test 5 2	>>1 hour	44.83	170.98
mk_adder_test 5 3	>>1 hour	38.27	250.16
mk_adder_test 6 3	>>1 hour	out of memory	1186.4
mk_adder_test 7 3	>>1 hour	out of memory	3759.9

From Slides of Clark Barrett's lecture. Summer School on Verification

Technology, Systems & Applications, September 17, 2008 – p. 42/98

Stålmarck's algorithm

Breadth first search instead of depth-first

Given a set of clauses Δ and any basic deduction algorithm R, the **dilemma rule** performs a case split on some literal p by considering the new sets of clauses $\Delta \cup \{(\neg p)\}$ and $\Delta \cup \{(p)\}$.

R is applied to each of these to get Δ_0 and Δ_1 respectively

The original Δ is augmented with $\Delta_0 \cap \Delta_1$

Abstract DPLL

- Abstract DPLL uses states and transitions to model the progress of the algorithm
- Most states are of the form M||F where
 - *M* is a **sequence** of annotated **literals** denoting partial truth assignment
 - F is the CNF formula being checked, represented as a set of clauses
- Initial state: $\emptyset || F$, where F is to be checked for satisfiability
- Transitions between states are defined by a set of conditional transition rules
- Final state
 - Fail special state, if F is unsatisfiable, or
 - M || G, where G is CNF formula equisatisfiable with original F and $M \models G$
- We will write $M \vDash C$ to mean that every truth assignment v, v(M) = True implies v(C) = True

Abstract DPLL and Abstract DPLL Modulo Theories Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli, 2006.

Abstract DPLL × X

UnitProp: $M F, C \lor \ell$	$\rightarrow M \ \ell F, C \lor \ell$	If $\begin{cases} M \vDash \neg C \\ \ell \text{ is undefined in } M \end{cases}$
PureLiteral: <i>M</i> <i>F</i>	$\rightarrow M \ell F$	If $\begin{cases} \ell \text{ occurs in some clause of } F \\ \neg \ell \text{ occurs in no clause of } F \\ \ell \text{ is undefined in } M \end{cases}$
Decide: <i>M</i> <i>F</i>	$\rightarrow M \ell^d F$	If $\begin{cases} \ell \text{ or } \neg \ell \text{ occurs in a clause of } F \\ \ell \text{ is undefined in } M \end{cases}$
Backtrack: $M \ell^d N F, C$	$\rightarrow M \neg \ell F, C$	If $\begin{cases} M \ell^d N \vDash \neg C \\ N \text{ contains no decision literals} \end{cases}$
Fail: <i>M</i> <i>F</i> , <i>C</i>	\rightarrow fail	If $\begin{cases} M \vDash \neg C \\ M \text{ contains no decision literals} \end{cases}$

Abstract DPLL and Abstract DPLL Modulo Theories Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli, 2006.

An Example: Abstract DPLL

```
\phi || 1 \vee \overline{2} \quad \overline{1} \vee \overline{2} \quad 2 \vee 3 \quad \overline{3} \vee 2 \quad 1 \vee 4
\Rightarrow (PureLiteral)
4||1 \vee \overline{2} \quad \overline{1} \vee \overline{2} \quad 2 \vee 3 \quad \overline{3} \vee 2 \quad \underline{1 \vee 4}
\Rightarrow (Decide)
4 1^{d} || \underline{1 \vee \overline{2}} \quad \overline{1} \vee \overline{2} \quad 2 \vee 3 \quad \overline{3} \vee 2 \quad 1 \vee 4
\Rightarrow (UnitProp)
4 1^{d} \overline{2} || 1 \vee \overline{2}, \overline{1} \vee \overline{2} 2 \vee 3 \overline{3} \vee 2 1 \vee 4
\Rightarrow (UnitProp)
4 1^{d} \overline{2} 3 || 1 \vee \overline{2}, \overline{1} \vee \overline{2} 2 \vee 3 \overline{3} \vee 2 1 \vee 4
4 1^{d} \overline{2} 3 || 1 \vee \overline{2}, \overline{1} \vee \overline{2} 2 \vee 3 \overline{3} \vee 2 1 \vee 4
\Rightarrow (Backtrack)
4 \overline{1} || 1 \vee \overline{2} \qquad \overline{1} \vee \overline{2} \qquad 2 \vee 3 \qquad \overline{3} \vee 2 \qquad 1 \vee 4
\Rightarrow (UnitProp)
4 \overline{1} \overline{2} || 1 \vee \overline{2} \qquad \overline{1} \vee \overline{2} \qquad 2 \vee 3 \qquad \overline{3} \vee 2 \qquad 1 \vee 4
\Rightarrow (UnitProp)
4\overline{1}\overline{2} 3||1 \vee \overline{2} \overline{1} \vee \overline{2} 2 \vee 3 \overline{3} \vee 2 1 \vee 4 \Rightarrow Fail
```

Assignments

- HW1 (due Sept 17th)
 - Install Z3
- Give a 3 sentence pitch for your project in next class
- Next: SMT