Satisfiability

Verifying cyberphysical systems

Sayan Mitra

mitras@illinois.edu

Some of the slides for this lecture are adapted from slides by Clark
Barrett

mailto:mitras@illinois.edu

Readings

* Chapter 7
* Appendix C

Outline

* Propositional Satisfiability problem
* Normal forms

* DPLL algorithm

Boolean satisfiability problem

Given a well-formed formula in propositional logic, determine whether
there exists a satisfying solution

Example: a(xq, x5, .., Xp) = (X Axy; Vx3) A(xg A—x3 VXy)

Set of variables: X = {x{, x5, ..., x;,},

Each variable is Boolean: type(x;) = {0,1}
Formula a is well-formed if it uses propositional operators, and A, or V, not —, iff & etc., properly
Recall, a valuation x of X maps each x; toavalueOor 1

A valuation x of X satisfies a is each each x; in a replaced by the corresponding value in x evaluates
to true. We write thisas x £ «

Otherwise, we write x ¥ «

Example: withx ={(x; » L,x, » 1,x3 > 0); x E«

Boolean satisfiability problem (SAT)

Given a well-formed formula in propositional logic, determine whether there exists a satisfying
solution

Restatement: 3x € val(X): x E a?

If the answer is "No” then « is said to be unsatisfiable

Aside. If Vx € val(X): x E a then a is said to be valid or a tautology
If ais valid then —a is unsatisfiable

a and a' are tautologically equivalent if they have the same truth tables

VxevalX):xFaexEa

What is a naive method for solving SAT?

What is the complexity of this approach? How many evaluations of a(xq, x5, ..., X;,)?

| Don’t Get No
Satisfaction,

but | try, try,
try, ...

| can prove
why.

Stephen A. Cook: Slide by Sayan Mitra using pictures
The Complexity of Theorem-Proving Procedures. STOC 1971: 151-158 from Wikipedia and cartoonstock.com

https://dblp.uni-trier.de/db/conf/stoc/stoc71.html

Online SAT solvers |[edit]
* BooISAT — Solves formulas in the DIMACS-CNF format or in a more
* Logictools& — Provides different solvers in javascript for learning, co
o minisat-in-your-browser& — Solves formulas in the DIMACS-CNF for
o SATRennesPAZ — Solves formulas written in a user-friendly way. Rt

® e somerby.net/mack/logice& — Solves formulas written in symbolic logic
I S - C O | I I p e e Offline SAT solvers |edit]

e MiniSAT% — DIMACS-CNF format and OPB format for it's companiol
e Lingelinge?’ — won a gold medal in a 2011 SAT competition.
e PicoSAT& — an earlier solver from the Lingeling group.
o Sat4j? — DIMACS-CNF format. Java source code available.
. o Glucose — DIMACS-CNF format.
SAT was the first problem shown to be NP-complete [Cook 71]
o UBCSAT®. Supports unweighted and weighted clauses, both in the
e CryptoMiniSat& — won a gold medal in a 2011 SAT competition. C+4
I d M | M I t : E M MiniSat 2.0 core, PrecoSat ver 236, and Glucose into one package, :
2 -SAT Ca n b e S O Ve I n p O y n O m I a I m e Xe rc I S e o Spearg — Supports bit-vector arithmetic. Can use the DIMACS-CNF
o HyperSAT & — Written to experiment with B-cubing search space
° ° ° ° ° ° . ° ° solver from the developers of Spear.
L]
(Read definition of NP: Nondeterministic Polytime in Appendix C) s
e Argo
« Fast SAT Solver® — based on genetic algorithms.
e zChaff & — not supported anymore.

This has real implications
1. Essentially we don’t know better than the naive algorithm

2. A solver for SAT can be used to solve any other problem in the
NP class with only polytime slowdown. i.e., makes a lot of sense
to bu ild S AT S Olve rS N The international SAT Competitions web page

SAT 2019 Race

Organizers Marijn Houle, Matti Jarvisalo, Martin Suda

Past Competitions

3. SAT/SMT solving is the cornerstone of many verification ==
procedures =

silver
Agle Track Main Track
Maple LCM Dist, Maple LCM,

CaDiCal. Agie, MapleCOMSPS LRB VSIDS 2,

SATHUNSAT Glu_ve Glucose 4.1 MapleLRB LCMOccRestart, c
CaDiCal. NoProof Voo Re Lo Maple COMSPS LRB VSIDS
Parallel Track No-Limit Track
ol — RCONEPS MapleCOMPSPS LRB VSIDS 2,
SATSUNSAT Syrup24, Syrup48 Plingeling orSCOMPSPS LRE VSIDS

uuuuuuu

Details

We will assume « to be in conjunctive normal form (CNF)
literals: variable or its negation, e.g., x3, X3
clause: disjunction (or) of literals, e.g., (x; V x, V =1x3)
CNF formula: conjunction (and) of clauses,
e.g., (x; Vxy, Vaxz) A(—xy, V)
A variable may appear positively or negatively in a clause

Logic and circuits
D D+ B

I=(DAAAB))V(-CA(AAB))

Repeated subexpression is inefficient

Solution: rename (AAB) & E

I'=(MDAE)V(-CAE)A((AAB) & E)

I and I are not tautologically equivalent

C =0A=B=1,E = 0 satisfies |

But they are equisatisfiable, i.e., I is satisfiable iff I' is also satisfiable

Converting to CNF

* View the formula as a graph
* Give new names (variables) to non-leafs

* Relate the inputs and the outputs of the nonleafs and add this as a
new clause

* Take conjunction of all of this

e & =(C

Converting to CNF . fj ;g)Af(iZ VFF)
*(AANB) & E

* ((AAB)>E)A(E > (AAB))

* («(AAB)VE)A (= EV(AAB))

* (AV-BVE)A(=EVA)A(=EVB))
*(GVH) &1

* (GVH)>I1)A(I - (GVH))

* (AGA-HVI)AN(=IVGVH)

* (AGVI) A(RHVID A(=IVGVH)
*(DANE) o G

* (\DV-EVG)A(~GVD)A(~GVE))
« (FAE)o H

* (AFV=EVH)AN(=HVF)A(=HVE))

Standard representations of CNF
* (MAV aBVE)A(=EVA)A(-EVB))

« (A + B’ + E)(E'+A)(E' + B)

¢ (-1 =2 5)(=51)(=5 2) DIMACS

* SMTLib

Davis Putnam Logemann Loveland Algorithm
(DPLL) 1962

Transform the given formula a by applying a sequence of satisfiability
preserving rules

If final result has an empty clause then unsatisfiable
if final result has no clauses then the formula is satisfiable

Davis Putnam Algorithm (DP) 1960

Rule 1. Unit propagation
Rule 2. Pure literal

Rule 3. Resolution

DP 1960

Rule 1. Unit propagation
A clause has a single literal

aE.../\.../\p/\.../\...

What choice do we really have?

A= AN VapVx)ApA--A(=x3VapVixy)..

DP 1960

Rule 1. Unit propagation
A clause has a single literal

aE.../\.../\p/\.../\...

What choice do we really have?

a' = ANy V) A A(Ax3 V) ..

« and a' are equisatisfiable

Davis Putnam Logemann Loveland Algorithm
(DPLL) 1962

Rule 1. Unit propagation
Rule 2. Pure literal
A literal appears only positively (or negatively) in a

A= AN VapVix) AN Vap)A-A(mx3VapVxg)..
p does not appear anywhere

Makes sense to set p = 0 and remove all occurrences of —p

Davis Putnam Logemann Loveland Algorithm
(DPLL) 1962

Rule 1. Unit propagation
Rule 2. Pure literal
A literal appears only positively (or negatively) in a

a=-ANxVapVxy)A(xgVap)A--A(=x3Vxy) ..
p does not appear anywhere

Makes sense to set p = 0 and remove all clauses in which —=p occurs

a and a' are equisatisfiable

a' =--AAN-A(Ax3VXy)...[p=0]

Davis Putnam Algorithm (DP) 1960

Rule 1. Unit propagation
Rule 2. Pure literal
Rule 3. Resolution

Choose a literal p that appears with both polarity in a. Suppose (£1 V¥, V-V p) be a clause in
which p appears positively, and (k; V k, V .-V =p) be a clause in which p appears negatively

Then the resolved clause is (${ V€5V ---Vk{Vk,V- k)

Pairwise, resolve each clause in which p appears positively with a clause in which p appears
negatively, and take the conjunction of all the results

Why is the result equisatisfiable?

What is the size of the resulting formula?

PLL modifies resolution in DP with recursive
S rule

),

),

Rule 1. Unit propagation

Rule 2. Pure literal

Rule 3’. Let A be the current set of clauses. Choose a literal p in A.
Check satisfiabilityof AU {p} (guessingp = 1)
If satisfiable then return True else
return result of checking satisfiability of AU { —p }

This is essentially a depth first search

A simple greedy algorithm for SAT (GSAT)

Input: Set of clauses C over X, parameters max-flips, max-tires

Output: A satisfying assignment for C, or @ if none found

fori= 1to max-tries
v :=random truth assignment in val(X)
for j =1 to max-flips
if v & C thenreturnv

p = variable in C such that flipping its value gives the largest
increase in the number of clauses of C that are satisfied by v

v = v with the assignment to p flipped

return @

From Slides of Clark Barrett’s
lecture.

Summer School on Verification
Technology, Systems & Applications,
September 17, 2008 — p. 42/98

Problem tautology dptaut dplitaut
prime 3 0.00 0.00 0.00
prime 4 0.02 0.06 0.04
prime 9 18.94 298 0.51
prime 10 11.40 3.03 0.96
prime 11 2811 298 0.51
prime 16 =1 hour out of memory 915
prime 17 =1 hour outof memory 3.87
ramsey 33 5 0.03 0.06 0.02
ramsey 33 6 513 828 0.31
mk_adder_test32 | >>1 hour 6.50 734
mk_adder_test42 | >>1 hour 22 95 46.86
mk_adder_test52 | =>>=1hour 44 83 17098
mk_adder _ test53 | >>=1 hour 3827 25016
mk_adder_test63 | >>1hour outofmemory 11864
mk_adder_test /3 | >>1hour outofmemory 37599

Stalmarck’s algorithm

Breadth first search instead of depth-first

Given a set of clauses A and any basic deduction algorithm R, the
dilemma rule performs a case split on some literal p by considering the
new sets of clauses AU {(=p)}and AU {(p)}.

R is applied to each of these to get A, and A; respectively

The original A is augmented with A; N A4

Abstract DPLL

* Abstract DPLL uses states and transitions to model the progress of
the algorithm

* Most states are of the form M||F where

M is a sequence of annotated literals denoting partial truth assignment
* F isthe CNF formula being checked, represented as a set of clauses

* Initial state: @||F, where F is to be checked for satisfiability

* Transitions between states are defined by a set of conditional
transition rules

* Final state
* Fail special state, if F is unsatisfiable, or
 M||G, where G is CNF formula equisatisfiable with original F and M & G

* We will write M = C to mean that every truth assignment v, v(M) =
True implies v(C) = True

Abstract DPLL and Abstract DPLL Modulo Theories Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli, 2006.

Abstract DPLL
X X3

UnitProp: M||F,C Vv ¢ > MZP||F,CV?¥ f! ME —C
| ¢ is undefined in M

PurelLiteral: M||F - M {||F (¢ occurs in some clause of F

If < =€ occurs in no clause of F
? is undefined in M

Decide: M||F — M £¢||F f £ or =% occurs in a clause of F
? is undefined in M

Backtrack: M £* N ||F,C | > M —{||F,C MPAN E —C

N contains no decision literals

If

—

Fail: M||F,C - fail MEe =C
If . . .
M contains no decision literals

Abstract DPLL and Abstract DPLL Modulo Theories Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli, 2006.

An Example: Abstract DPLL

dllrv2 1v2 2v3 3v2 1v 4
= (Pureliteral)

4|ltv2 1v2 2v3 3v2 1V 4
= (Decide)

419||1Lv2 1v2 2v3 3v2 1v4
= (UnitProp)

4142 ||11v2. 1v2 2v3 3v2 1v4
= (UnitProp)
41923 |1V 2.
41923 1|1V 2.
= (Backtrack)
41||11v2 1v2 2v3 3v2 1V 4

= (UnitProp)

412||11v2 1v2 2v3 3v2 1v 4

= (UnitProp)

412 3||1v2 1v2 2v3 3Vv2 1V 4=>Fail

2v3 3v2 1v 4

1
1 2v3 3v2 1v 4

2
2

< <

Assignments

* HW1 (due Sept 17t)
* |nstall Z3

* Give a 3 sentence pitch for your project in next class

e Next: SMT

