
Verifying Neural Networks
ReluPlex

Verifying cyberphysical systems

Sayan Mitra
mitras@illinois.edu

Reference : Introduction to Neural Network Verification by Aws Albarghouthi

mailto:mitras@illinois.edu

Outline

Modeling neural networks
Requirements of neural networks
Reluplex algorithm

References

• Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
by Guy Katz, Clark Barrett, David Dill, Kyle Julian, Mykel Kochenderfer,
CAV 2017
• Book: Introduction to Neural Network Verification by Aws

Albarghouthi, 2021
• Further exploration: Neural Network Verification competition:

https://sites.google.com/view/vnn20/
• Neural Networks and Deep Learning

https://sites.google.com/view/vnn20/
http://neuralnetworksanddeeplearning.com/index.html

Neural networks as graphs

• Consider a network G = (𝑉, 𝐸)

• Let 𝑉!", 𝑉# ⊆ 𝑉 be nonempty sets of input, output vertices

• Each 𝑣 ∈ 𝑉 ∖ 𝑉!" is associated with a function 𝑓$: ℝ!"%($) → ℝ
where 𝑖𝑛𝑑(𝑣) is the indegree of 𝑣

• Typically these functions are differentiable (almost everywhere)

Assume w.l.o.g

• All nodes are reachable from some 𝑉!"

• Every node reach some 𝑉#

• There is a total ordering on 𝑉 and another on 𝐸 𝑣!

𝑣"

𝑣#

𝑓$

http://neuralnetworksanddeeplearning.com/chap1.html

Computation performed by a Network

• 𝑉!" = 𝑛, 𝑉# = 𝑚
• The network 𝐺 = (𝑉, 𝐸) defines a function ℝ" → ℝ$

defined as follows
• For any non input node 𝑣 ∈ 𝑉 the output from 𝑣 is

recursively defined as follows: let
𝑣%, 𝑣 , 𝑣&, 𝑣 , … , 𝑣!"'()), 𝑣 be the ordered set of all

input edges to 𝑣
𝑜𝑢𝑡 𝑣 ≔ 𝑓) 𝑜𝑢𝑡 𝑣% , … , 𝑜𝑢𝑡(𝑣!"'))

• Base case: For input vector 𝒙 ∈ ℝ", for any input node 𝑣 ∈ 𝑉!",
output 𝑜𝑢𝑡 𝑣 ≔ 𝒙!

𝑣!

𝑣"

𝑣#

𝑓$

𝑜𝑢𝑡 𝑣
!

𝑜𝑢𝑡
𝑣 "

Example functions

𝑜𝑢𝑡 𝑦 = 𝑓! 𝑓" 𝑜𝑢𝑡 𝑥

= 𝑓! 𝑓" 𝑥
= 𝑓! 2𝑥 + 1
= max(0,2𝑥 + 1)

𝑦𝑥 𝑣

𝑓# ≔ 2𝑖𝑛 + 1

𝑓! ≔ max(0, in)
Rectified Linear

Unit (RELU)

RELU Sigmoid

𝑓! ≔ 𝜎 in =
1

1 + exp(−𝑖𝑛)

Example functions

𝑜𝑢𝑡 𝑦# = 𝑓! 2
$%#

&

𝑜𝑢𝑡 𝑣$ 𝑤$

= 𝑓! ∑$%#& (∑'%#& 𝑥'𝑢')𝑤$

Multi-layered Perceptron
Hidden layer

𝑦"𝑥" 𝑣"

𝑦#𝑥# 𝑣#

𝑦!𝑥! 𝑣!

Softmax

𝑓!! ≔
𝑒𝑥𝑝(𝑣")

∑"#$% exp(𝑣")

Typical requirements studied for neural networks

For any input 𝑥 (image, text, program, controller) 𝑓(𝑥) meets <some
condition>

To check the validity of this statement, we can check the satisfiability of
the negation, i.e., does there exist some input 𝑥 such that 𝑓 𝑥 does not
meet <some condition>
For any inputs 𝑥, 𝑦 (image, text, program, controller) 𝑓(𝑥) and 𝑓(𝑦)meets
<some condition>

Pros. Same form as pre-postconditions of automata transitions
Cons. with this framing

• <some condition> usually requires domain knowledge
• can only be specified locally

• Does not cover requirements that use the NN in closed-loop system

𝑦!𝑥! 𝑣!

𝑦"𝑥" 𝑣"

𝑦#𝑥# 𝑣#

𝑔

Application: ACAS Xu system
• 3MB DNN represents a large (2GB) lookup table for collision

avoidance of unmanned aircraft

• Input: 𝒙 ∈ ℝ𝟕 ρ: Distance; θ: relative angle; ψ: relative
heading; 𝑣"#$, 𝑣%$: Speeds, 𝜏 :Time until loss of vertical
separation; 𝑎&'(): Previous advisory.

• Output: Clear of Conflict (COC) or advisor weak/strong
left/right.

• Network: 45 networks produced by discretizing 𝜏 and 𝑎&'(),
each with 5 inputs and 5 outputs

• Requirement: E.g. If the intruder is far then the score for COC
should be above some threshold
∀𝒙 ∈ ℝ𝟕 𝒙. 𝑑 > 55947, 𝒙. 𝑣*+, > 1145, 𝒙. 𝑣", ≤ 60 ⇒ 𝑓 𝒙 ≥ 1500

General formulation of correctness
𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∧ 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ⇒ 𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

6
01"

2

𝑥0 − 𝑐0 ≤ 0.1 ∧ 𝐹3 6 6
01"

2

𝑥0 = 𝑣04 ∧ 6
015

567

𝑟0 = 𝑣04 ∧ 6
01"

7

𝑟" > 𝑟"60

𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑃
𝑟" == 𝑓3"(𝑥")
𝑟# == 𝑓3#(𝑥#)

…
𝑟8 == 𝑓38(𝑥8)
𝑃𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑄

Precondition and Post-condition can be encoded in LRA. Solve using DPLLLRA

Sigmoids and ReLUs and exponential blow-up

• Sigmoids can be approximated by piece-wise relations
• Others have considered MILP encodings
• Without disjunctions the problem is an LP

• Polynomial Time solvable, Simplex

• If for all the inputs, the ReLUs are either active (x) or inactive
(0)
• We can replace each ReLU with either 𝑥% = 𝑓(𝑥) or 𝑥% = 0 based on

lightweight analysis of which is which

• Otherwise, DPLL has to handle the disjunctions and in the worst
case will have to consider every possible case (active or
inactive) for every possible ReLU leading to exponential number
of calls to Simplex
• Reluplex [Katz et al. 2017] addresses this problem

𝑥$

𝑦$%!
𝑦$

𝑥$%!

Reluplex Decision Procedure for ReLU NNs

Input: 𝐹 in Reluplex form
Output: ∃𝒙 ∈ ℝ6 such that 𝒙 ⊨ 𝐹?

• Delay case splitting on ReLUs
• In the worst case it is still exponential, but has been shown to be

empirically better than DPLLLRA

Reluplex Decision Procedure for ReLU NNs

Input: 𝐹 in Reluplex form
Output: ∃𝒙 ∈ ℝ6 such that 𝒙 ⊨ 𝐹?

Reluplex form
• Equations (same as Simplex)
• Bounds (same as Simplex)
• Relu: 𝑥$ = 𝑟𝑒𝑙𝑢 𝑥'
Given conjunction of inequalities and ReLU constraints we can convert
them to Reluplex form and add 𝑥$ ≥ 0.

Reluplex
Input: A formula 𝐹 in Reluplex form
Output: 𝒙 ⊨ 𝐹 or UNSAT
𝒙 ≔ ⟨𝑥$ ↦ 0⟩; 𝐹′:= non ReLU part of 𝐹
while true do
𝑟 ≔ 𝑆𝑖𝑚𝑝𝑙𝑒𝑥(𝐹&, 𝒙)
if r is unsat then return UNSAT
else if 𝑟 ⊨ 𝐹 then return 𝑟

// Handle violated ReLU constraints

Let 𝑥$ = 𝑟𝑒𝑙𝑢 𝑥' ∈ 𝐹 such that 𝒙⌈𝑥$ ≠ 𝑟𝑒𝑙𝑢 𝒙⌈𝑥'
if 𝑥$ is basic then pivot 𝑥$ with non-basic variable 𝑥(where 𝑘 ≠ 𝑗 and 𝑐$(≠ 0
if 𝑥' is basic then pivot 𝑥' with non-basic variable 𝑥(where 𝑘 ≠ 𝑖 and 𝑐'(≠ 0
𝒙⌈𝑥$ ≔ 𝑟𝑒𝑙𝑢(𝒙⌈𝑥') OR 𝒙⌈𝑥' ≔ 𝒙⌈𝑥$

// Case split
If 𝑢' > 0, 𝑙' < 0 and 𝑥$ = 𝑟𝑒𝑙𝑢 𝑥' considered > 𝜏 times

𝑟! = 𝑅𝑒𝑙𝑢𝑝𝑙𝑒𝑥(𝐹 ∧ 𝑥' ≥ 0 ∧ 𝑥' = 𝑥')
𝑟" = 𝑅𝑒𝑙𝑢𝑝𝑙𝑒𝑥(𝐹 ∧ 𝑥' ≤ 0 ∧ 𝑥$ = 0)
if 𝑟! = 𝑟" = unsat then return UNSAT
else if 𝑟! = 𝑢𝑛𝑠𝑎𝑡 then return 𝑟! else return 𝑟"

Reluplex
Input: A formula 𝐹 in Reluplex form
Output: 𝒙 ⊨ 𝐹 or UNSAT
𝒙 ≔ ⟨𝑥$ ↦ 0⟩; 𝐹′:= non ReLU part of 𝐹
while true do
𝑟 ≔ 𝑆𝑖𝑚𝑝𝑙𝑒𝑥(𝐹&, 𝒙)
if r is unsat then return UNSAT
else if 𝑟 ⊨ 𝐹 then return 𝑟

// Handle violated ReLU constraints

Let 𝑥$ = 𝑟𝑒𝑙𝑢 𝑥' ∈ 𝐹 such that 𝒙⌈𝑥$ ≠ 𝑟𝑒𝑙𝑢 𝒙⌈𝑥'
if 𝑥$ is basic then pivot 𝑥$ with non-basic variable 𝑥(where 𝑘 ≠ 𝑗 and 𝑐$(≠ 0
if 𝑥' is basic then pivot 𝑥' with non-basic variable 𝑥(where 𝑘 ≠ 𝑖 and 𝑐'(≠ 0
𝒙⌈𝑥$ ≔ 𝑟𝑒𝑙𝑢(𝒙⌈𝑥') OR 𝒙⌈𝑥' ≔ 𝒙⌈𝑥$

// Case split
If 𝑢' > 0, 𝑙' < 0 and 𝑥$ = 𝑟𝑒𝑙𝑢 𝑥' considered > 𝜏 times

𝑟! = 𝑅𝑒𝑙𝑢𝑝𝑙𝑒𝑥(𝐹 ∧ 𝑥' ≥ 0 ∧ 𝑥' = 𝑥')
𝑟" = 𝑅𝑒𝑙𝑢𝑝𝑙𝑒𝑥(𝐹 ∧ 𝑥' ≤ 0 ∧ 𝑥$ = 0)
if 𝑟! = 𝑟" = unsat then return UNSAT
else if 𝑟! = 𝑢𝑛𝑠𝑎𝑡 then return 𝑟! else return 𝑟"

Termination

• The last part of the algorithm ensures termination
• Otherwise, the algorithm could loop forever between fixing relu

constraints and Simplex
• 𝐹 ≡ 𝑥$ = 𝑟𝑒𝑙𝑢 𝑥' is split into two cases
• 𝐹" ≡ 𝑥] ≥ 0 ∧ 𝑥0 = 𝑥]
• 𝐹# ≡ 𝑥] ≤ 0 ∧ 𝑥0 = 0
• 𝐹′ ≡ (𝐹 ∧ 𝐹") ∨ (𝐹 ∧ 𝐹#)

Performance of Reluplex on ACAS

Summary

• Input-output and robustness requirements of neural networks can be
expressed as satisfiability queries
• Without ReLU and disjunctions the requirements can be checked

efficiently, e.g., Simplex
• Reluplex implements smarter case splitting

