
Reachability analysis

Sayan Mitra
Verifying cyberphysical systems

mitras@illinois.edu

mailto:mitras@illinois.edu


Next few lectures
Focus on specific classes of hybrid automata for which 
safety properties (invariants) can be verified completely 
automatically
– Finite state machines
– Alur-Dill’s Timed Automata[1] (Today)
– Rectangular initializaed hybrid automata
– Linear hybrid automata
– …

We will introduce abstractions: Simplifying or 
approximating one automaton A with another 
automaton B

[1] Rajeev Alur et al. The Algorithmic Analysis ofHybrid Systems. Theoretical 
Computer Science, volume 138, pages 3-34, 1995.

http://engr-courses.engr.illinois.edu/ece584/papers/aahs.pdf


Today

• Finite state machines
• Algorithmic analysis of (Alur-Dill’s) Timed Automata[1]

– A restricted class of what we call hybrid automata in this course with 
only clock variables

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer 
Science, 126:183-235, 1994.

http://engr-courses.engr.illinois.edu/ece584/papers/alur_dill94.pdf


Reachability of Finite Automata

An finite automaton is a tuple 𝒜 = 〈𝑄, Q!, 𝒟〉 where
• 𝑄 is a finite set of states
• 𝑄! ⊆ 𝑄 is the set of initial or start states
• 𝒟 ⊆ 𝑄×𝑄 is the set of transitions
An execution of 𝒜 is an alternating sequence of states 
and actions 𝛼 = 𝑞!𝑞"𝑞# …𝑞$such that:

1. 𝑞! ∈ Q! 2. ∀ 𝑖 in the sequence, 𝑞", 𝑞"#$ ∈ 𝒟
A state 𝒖 is reachable if there exists an execution 𝛼
such that 𝛼. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝑞$ = 𝒖



Reachability in finite state machines

𝑅𝑒𝑎𝑐ℎ𝒜 Θ : set of states reachable from Θ by automaton 𝒜

An invariant is a set of states I such that 𝑅𝑒𝑎𝑐ℎ𝒜 ⊆ 𝐼

How to check whether 𝒖 is reachable ? 

Q: All states e.g. 𝐼&

Invariant e.g. 𝐼!

𝑅𝑒𝑎𝑐ℎ𝒜(𝑄")

𝑸𝟎



Reachability as graph search
Q1. Given 𝒜, is a state 𝒖 ∈ 𝑄 reachable? 
Define a graph 𝐺𝒜 = 〈𝑉, 𝐸〉 where 

𝑉 = 𝑄
𝐸 = 𝑞, 𝑞! 𝑞 → 𝑞!}

Q2. Does there exist a path in 𝐺𝒜 from any state in Θ to 𝑢 ?

Perform Depth First or Breadth First Search on 𝐺𝒜 from 𝑄!

Time complexity of BFS 𝑂(| 𝑄 | + 𝐷|
Space complexity is 𝑂(| 𝑄 |)



Nondeterministic reachability
Input: G = (V, E), 𝑄", 𝑈 ⊆ 𝑉
𝑛 ∶= |𝑉|
vcurrent := choose 𝑄"
If vcurrent ∈ 𝑇 return ‘‘yes”
Else For i = 1 to 𝑛:

vnext := choose V
If (vcurrent, vnext) ∉E break
If vnext ∈ T return ‘‘yes”
vcurrent := vnext

Return ‘‘no”

Requires only O(log |Q|) bits of memory
Using Savitch’s construction we get a deterministic algorithm that 
uses O(log2|Q|) bits  



Adding Clocks and Clock Constraints

• A clock variable x is a continuous (analog) variable of type real such that 
along any trajectory 𝜏 of x, for all t ∈ 𝜏. 𝑑𝑜𝑚, 𝜏 ↓ 𝑥 𝑡 = 𝑡. 

• For a set X of clock variables, the set Φ(X) of integral clock constraints are 
expressions defined by the syntax:

g ::= x ≤ 𝑞 𝑥 ≥ 𝑞 ¬ 𝑔 | 𝑔# ∧ 𝑔$
where 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑞 ∈ ℤ

• Examples: x = 10; x ∈ [2, 5); true are valid clock constraints
• What do clock constraints look like? 

• Semantics of clock constraints [𝑔]



Integral Timed Automata

Definition. A integral timed automaton is a HIOA  𝒜 =
〈𝑉, Θ, 𝐴, 𝒟, 𝒯〉 where 
– V = X ∪ 𝑙 , 𝑋 is a set of n clocks and 𝑙 is a discrete state 

variable of finite type 𝐿; stata space 𝑣𝑎𝑙 𝑋 ×𝐿
– A is a finite set 
– 𝒟 is a set of transitions such that 

• The guards are described by clock constraings Φ(𝑋)
• 𝑥, 𝑙 − 𝑎 → 𝑥", 𝑙" implies either 𝑥" = 𝑥 or 𝑥 = 0

– 𝒯 set of clock trajectories for the clock variables in X



Example: Light switch
Math Formulation
automaton Switch

variables
internal x, y:Real := 0, loc: {on,off} := off

transitions
internal push

pre x ≥ 2
eff if loc = on then x := 0 

else x,y := 0; loc := off
internal pop

pre y = 15 /\ loc = off
eff x := 0

trajectories
invariant loc = off => y ≤ 15 
evolve d(x) = 1; d(y) = 1

Description
Switch can be turned on whenever at least 2 time 
units have elapsed since the last turn on. Switches 
off automatically 15 time units after the last on.



Timed Automaton application in Web Services (WS)

Modelling and Verification of Web Services Business 
Activity Protocol Anders P. Ravn, Jiri Srba, and 
Saleem Vighio, RV 2010

WS-Coordination describes a framework for 
coordinating transactional web services 

Network protocol described in state tables

600+ lines of C-like code in the protocol model

Modeled and Verified using the UPPAAL tool

Analysis considers different channel models

The main safety property: protocol does not enter 
invalid state

Property violated in all but the FIFO channel model

https://uppaal.org/


Control State (mode) Reachability Problem

• Given an ITA 𝒜, check if a particular (mode) 
control state 𝑙∗ ∈ 𝐿 is reachable from the initial 
states

• Why is mode reachability good enough even if 
we are interested in checking reachability of 
𝑋∗ ⊆ 𝑣𝑎𝑙 𝑋 ? 



Model Reachability of Integral Timed 
Automata is Decidable [Alur Dill 94] 

That is, there is an algorithm that takes in 𝒜, 𝑙∗ and 
terminates with the correct answer.

Key idea: 
– Construct a finite automaton 𝐵 that is a time-abstract 

bisimilar to the given ITA 𝒜
– That is, FA 𝐵 behaves identically to ITA 𝒜 w.r.t. control state 

reachability, but does not preserve timing information

– Check reachability of FA 𝐵



An equivalence relation with a finite quotient

Under what conditions do two states x1 and x2 of the 
automaton  𝒜 behave identically with respect to control state 
reachability (CSR)?

When do they satisfy the same set of clock constraints? 
When would they continue to satisfy the same set of clock 
constraints?



An equivalence relation with a finite quotient

Under what conditions do two states x1 and x2 of the automaton  𝒜
behave identically with respect to mode reachability ?

When do they satisfy the same set of clock constraints? 
When would they continue to satisfy the same set of clock constraints? 

x1. 𝑙𝑜𝑐 = x2.𝑙𝑜𝑐 and 
x1 and x2 satisfy the same set of clock constraints

For each clock 𝑦 int(x1.𝑦) = int(x2.𝑦) or int(x1.𝑦) ≥ 𝑐𝒜$ and int(x2.𝑦) ≥
𝑐𝒜$. (𝑐𝒜$ is the maxium clock guard of 𝑦)
For each clock 𝑦 with x1.𝑦 ≤ 𝑐𝒜$, frac(x1.𝑦) = 0 iff frac(x2.𝑦) = 0
For any two clocks 𝑦 and 𝑧 with x1.𝑦 ≤ 𝑐𝒜$ and x1.𝑧 ≤ 𝑐𝒜%, frac(x1.𝑦) ≤
frac(x1.𝑧) iff frac(x2.𝑦) ≤ frac(x2.𝑧)

Lemma. This is an equivalence relation on val(V) the states of 𝒜

The partition of val(V) induced by this relation is are called clock 
regions 



What do the clock regions look like?

Example of 
Two Clocks 

X = {y,z}
𝑐𝒜% = 2
𝑐𝒜& = 3



Complexity

Lemma. The number of clock regions is bounded 
by |L||X|! 2|X|∏"∈$(2𝑐𝒜" + 2).



Region automaton R(𝒜)
Given an ITA 𝒜 = 〈𝑉, Θ, 𝒟, 𝒯〉, we construct the corresponding Region 
Automaton R 𝒜 = 𝑄&, Θ&, 𝐷& .
(i) R(𝒜) visits the same set of modes (but does not have  timing 

information) and 
(ii) R(𝒜) is finite state machine. 
• ITA (clock constants) defines a set of  clock regions, say C𝒜. The set of 

states 𝑄& = 𝐶𝒜×𝐿
• 𝑄' ⊆ 𝑄is the set of states contain initial set Θ of 𝒜
• 𝐷:We add the transitions between 𝑄 (regions)

– Time successors: Consider two clock regions 𝛾 and 𝛾!, we say that 𝛾! is a time successor 
of 𝛾 if there exits a trajectory of ITA starting from 𝛾 that ends in 𝛾’

– Discrete transitions: Same as the ITA

Theorem. A mode of ITA 𝒜 is reachable iff it is also reachable in R 𝒜 .
(we say that R 𝒜 is time abstract bisimilar to 𝒜)



Time successors

The clock regions in blue are 
time successors of the clock 
region in red. 



Example 1: Region Automata

ITA

Corresponding FA



Example 2

ITA

Clock 
Regions



|X|! 2|X|∏&∈((2𝑐𝒜& + 2)

Corresponding FA

Drastically increasing with the 
number of clocks



Special Classes of Hybrid Automata

– Finite Automata
– Integral Timed Automata ß
– Rational time automata
– Multirate automata
– Rectangular Initialized HA

– Rectangular HA

– Linear HA 

– Nonlinear HA
Lecture Slides by Sayan Mitra

mitras@illinois.edu



ACM NEWS: In Space, No One Can Fix Your 
Sign Errors--- Paul Cheng & Peter Carian

15,000 satellite launches planned for the decade
5.3% satellites are lost in the first year, 42% of 
those in first 2 months
Most common cause sign errors: SW/HW 
parameter used the wrong way
• fitting acceleration sensors the wrong way
• wrong usage of negative instead of positive 

parameters 
• switching current in wrong direction in a circuit  
• inverting the orientation of the electromagnets 

used for positioning

Genesis (2001) for
capturing particles from
the solar wind, pounded
into the Utah desert
unbraked because a
pencil-eraser-sized
deceleration sensor was
mounted upside-down.

https://cacm.acm.org/news/256258-in-space-no-one-can-fix-your-sign-errors/fulltext
https://www.dlr.de/content/en/articles/news/2021/03/20210923_dlr-is-developing-a-launch-coordination-center.html


Clocks and Rational Clock Constraints

• A clock variable x is a continuous (analog) variable of type real such that 
along any trajectory 𝜏 of x, for all t ∈ 𝜏. 𝑑𝑜𝑚, 𝜏 ↓ 𝑥 𝑡 = 𝑡. 

• For a set X of clock variables, the set Φ(X) of rational clock constraints are 
expressions defined by the syntax:

g ::= x ≤ 𝑞 𝑥 ≥ 𝑞 ¬ 𝑔 | 𝑔# ∧ 𝑔$
where 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑞 ∈ ℚ

• Examples: x = 10.125; x ∈ [2.99, 5); true are valid rational clock constraints

• Semantics of clock constraints [𝑔]

Lecture Slides by Sayan Mitra
mitras@illinois.edu



Step 1. Rational Timed Automata

Definition. A rational timed automaton is a HA 𝓐 = 
〈𝑉, Θ, 𝐴, 𝒟, 𝒯〉 where 
– V = X ∪ 𝑙𝑜𝑐 , where 𝑋 is a set of n clocks and 𝑙 is a 

discrete state variable of finite type Ł
– A is a finite set 
– 𝒟 is a set of transitions such that 

• The guards are described by rational clock constraings Φ(𝑋)
• 𝑥, 𝑙 − 𝑎 → 𝑥!, 𝑙! implies either 𝑥! = 𝑥 or 𝑥 = 0

– 𝒯 set of clock trajectories for the clock variables in X

Lecture Slides by Sayan Mitra
mitras@illinois.edu



Example: Rational Light switch
Switch can be turned on whenever at least 2.25 time units have elapsed 
since the last turn off or on. Switches off automatically 15.5 time units after 
the last on.

automaton Switch
internal push; pop

variables
internal x, y:Real := 0, loc:{on,off} := off

transitions
push

pre x >=2.25
eff if loc = on then y := 0 fi; x := 0; loc := off

pop
pre y = 15.5 ∧ loc = off
eff x := 0

trajectories
invariant loc = on ∨ loc = off
stop when y = 15.5 ∧ loc = off
evolve d(x) = 1; d(y) = 1

Lecture Slides by Sayan Mitra
mitras@illinois.edu



Control State (Location) Reachability Problem

• Given an RTA, check if a particular mode is 
reachable from the initial states

• Is problem decidable? 
• Yes
• Key idea: 
– Construct a ITA that has exactly same mode 

reachability behavior as the given RTA (timing 
behavior may be different)

– Check mode reachability for ITA

Lecture Slides by Sayan Mitra
mitras@illinois.edu



Construction of ITA from RTA
• Multiply all rational constants by a factor 

q that make them integral
• Make d(x) = q for all the clocks

• RTA Switch reaches the same control 
locations as the ITA Iswitch

• Simulation relation R is given by 
• (u,s) ∈ 𝑅 iff u.x = 4 s.x and u.y = 4 s.y

automaton ISwitch
internal push; pop
variables

internal x, y:Real := 0, loc:{on,off} := off
transitions

push
pre x >=  9
eff if loc = on then y := 0 fi; x := 0; loc := off

pop
pre y = 62 ∧ loc = off
eff x := 0

trajectories
invariant loc = on ∨ loc = off
stop when y = 62 ∧ loc = off
evolve d(x) = 4; d(y) = 4

Lecture Slides by Sayan Mitra
mitras@illinois.edu



Step 2. Multi-Rate Automaton

• Definition. A multirate automaton is 𝓐 = 〈𝑉, 𝑄, Θ, 𝐴, 𝒟, 𝒯〉
where 
– V = X ∪ 𝑙𝑜𝑐 , where 𝑋 is a set of n continuous variables and 𝑙𝑜𝑐

is a discrete state variable of finite type Ł
– A is a finite set of actions
– 𝒟 is a set of transitions such that 

• The guards are described by rational clock constraings Φ(𝑋)
• 𝑥, 𝑙 − 𝑎 → 𝑥", 𝑙" implies either 𝑥" = 𝑐 𝑜𝑟 𝑥" = 𝑥

– 𝒯 set of trajectories such that 
for each variable 𝑥 ∈ 𝑋 ∃𝑘 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜏 ∈ 𝒯, 𝑡 ∈ 𝜏. 𝑑𝑜𝑚

𝜏 𝑡 . 𝑥 = 𝜏 0 . 𝑥 + 𝑘 𝑡

Lecture Slides by Sayan Mitra
mitras@illinois.edu



Control State (Location) Reachability 
Problem

• Given an MRA, check if a particular location is 
reachable from the initial states

• Is problem is decidable? Yes
• Key idea: 
– Construct a RTA that is bisimilar to the given MRA

Lecture Slides by Sayan Mitra
mitras@illinois.edu



Example: Multi-rate to rational TA

Lecture Slides by Sayan Mitra
mitras@illinois.edu



Step 3. Rectangular HA
Definition. A rectangular hybrid automaton (RHA) is a HA 𝓐 = ⟨𝑉, 𝐴, 𝒯, 𝒟⟩
where 

– V = X ∪ 𝑙𝑜𝑐 , where X is a set of n continuous variables and 𝑙𝑜𝑐 is a 
discrete state variable of finite type Ł

– A is a finite set 
– 𝒯 =∪ℓ 𝒯ℓ set of trajectories for X

• For each 𝜏 ∈ 𝒯ℓ, 𝑥 ∈ 𝑋 either (i) 𝑑 𝑥 = 𝑘ℓ or (ii) 𝑑 𝑥 ∈ 𝑘ℓ! , 𝑘ℓ)
• Equivalently, (i) 𝜏 𝑡 ⌈𝑥 = 𝜏(0)⌈𝑥 + 𝑘ℓ𝑡

(ii) 𝜏(0)⌈𝑥 + 𝑘ℓ!𝑡 ≤ 𝜏 𝑡 ⌈𝑥 ≤ 𝜏(0)⌈𝑥 + 𝑘ℓ)𝑡
– 𝒟 is a set of transitions such that 

• Guards are described by rational clock constraings  
• 𝑥, 𝑙 →* 𝑥", 𝑙" implies 𝑥" = 𝑥 𝑜𝑟𝑥" ∈ [𝑐!, 𝑐)]

Lecture Slides by Sayan Mitra
mitras@illinois.edu



CSR Decidable for RHA?

• Given an RHA, check if a particular location is 
reachable from the initial states?

• Is this problem decidable? No 
– [Henz95] Thomas Henzinger, Peter Kopke, Anuj Puri, and Pravin Varaiya. 

What's Decidable About Hybrid Automata?. Journal of Computer and 
System Sciences, pages 373–382. ACM Press, 1995. 

– CSR for RHA reduction to Halting problem for 2 counter machines
– Halting problem for 2CM known to be undecidable
– Reduction in next lecture

Lecture Slides by Sayan Mitra
mitras@illinois.edu

http://engr-courses.engr.illinois.edu/ece584/papers/henz_whats.pdf


Step 4. Initialized Rectangular HA
Definition. An initialized rectangular hybrid automaton (IRHA) is a RHA 𝓐 where 

– V = X ∪ 𝑙𝑜𝑐 , where  X is a set of n continuous variables and  𝑙𝑜𝑐 is a 
discrete state variable of finite type Ł

– A is a finite set
– 𝒯 =∪ℓ 𝒯ℓ set of trajectories for X

• For each 𝜏 ∈ 𝒯ℓ, 𝑥 ∈ 𝑋 either (i) 𝑑 𝑥 = 𝑘ℓ or (ii) 𝑑 𝑥 ∈ 𝑘ℓ! , 𝑘ℓ)
• Equivalently, (i) 𝜏 𝑡 ⌈𝑥 = 𝜏(0)⌈𝑥 + 𝑘ℓ𝑡

(ii) 𝜏(0)⌈𝑥 + 𝑘ℓ!𝑡 ≤ 𝜏 𝑡 ⌈𝑥 ≤ 𝜏(0)⌈𝑥 + 𝑘ℓ)𝑡
– 𝒟 is a set of transitions such that 

• Guards are described by rational clock constraings  
• 𝑥, 𝑙 →* 𝑥", 𝑙" implies if dynamics changes from ℓ to ℓ′ then 𝑥" ∈
[𝑐!, 𝑐)], otherwise 𝑥" = 𝑥

Lecture Slides by Sayan Mitra
mitras@illinois.edu



Example: Rectangular Initialized HA

1

𝑑 𝑥" = k"
𝑑 𝑥# = k#

2

𝑑 𝑥" = k′"
𝑑 𝑥# = k#

3

𝑑 𝑥" ∈ [𝑎, 𝑏]
𝑑 𝑥# = k$

Pre 𝑥" ≥ 𝐺 ∧ 𝑥# ≤ 𝐺 Eff 𝑥" ≔
0

Both Pre 
𝑥", 𝑥# have 
to be reset

Eff 𝑥", 𝑥# ∈ [𝑐, 𝑑]

Lecture Slides by Sayan Mitra
mitras@illinois.edu



CSR Decidable for IRHA?

• Given an IRHA, check if a particular location is 
reachable from the initial states

• Is this problem decidable? Yes
• Key idea: 
– Construct a 2n-dimensional initialized multi-rate 

automaton that is bisimilar to the given IRHA
– Construct a ITA that is bisimilar to the Singular TA

Lecture Slides by Sayan Mitra
mitras@illinois.edu



From IRHA to Singular HA conversion

For every variable create two variables---tracking the 
upper and lower bounds

IRHA MRA

𝑥 𝑥ℓ ; 𝑥#

Evolve: 𝑑(𝑥) ∈ [𝑎$, 𝑏$] Evolve: 𝑑 𝑥ℓ = 𝑎$; 𝑑 𝑥# = 𝑏$

Eff: 𝑥% ∈ [𝑎$, 𝑏$] Eff: 𝑥ℓ= 𝑎$; 𝑥# = 𝑏$

𝑥% = 𝑐 𝑥ℓ= 𝑥# = 𝑐

Guard: 𝑥 ≥ 5 𝑥& ≥ 5

𝑥& < 5 ∧ 𝑥# ≥ 5 Eff 𝑥& = 5

Lecture Slides by Sayan Mitra
mitras@illinois.edu



Example IRHA

v1
𝑐̇ ∈ 1,3

𝑑̇ ∈ [−3,−2]

v2
𝑐̇ ∈ −4,−2
𝑑̇ ∈ [−3,−2]

𝑐 ≔ 0; 𝑑 ≔ 1

𝑐 ≤ 5 ∧ 𝑑 ≤ −3
𝑐 ≔ 4

v3
𝑐̇ ∈ −4,−2
𝑑̇ ∈ [1,2]

𝑑 ≤ −5
𝑑 ≔ −4

v4
𝑐̇ ∈ 1,3
𝑑̇ ∈ [1,2]

𝑐 ≥ −3 ∧ 𝑑 ≤ −2
𝑐 ∈ [−1,−2]

𝑐 ≥ 0 ∧ 𝑑 ≤2
𝑑 ≔ 1

Lecture Slides by Sayan Mitra
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Initialized Singular HA

v1
̇𝑐% = 1
̇𝑐& = 3
̇𝑑% = −3
̇𝑑& = −2

v2
̇̇𝑐% = −4

̇𝑐& = −2
̇𝑑% = −3
̇𝑑& = −2

𝑐) , 𝑐* ≔ 0; 𝑑) , 𝑑* ≔ 1

v3
̇̇𝑐) = −4

̇𝑐* = −2
̇𝑑) = 1
̇𝑑* = 2

v4
̇̇𝑐) = 1

̇𝑐* = 3
̇𝑑) = 1
̇𝑑* = 2

Lecture Slides by Sayan Mitra
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Transitions

5

v1
̇𝑐% = 1
̇𝑐& = 3
̇𝑑% = −3
̇𝑑& = −2

𝑐) ≤ 5
𝑐) , 𝑐* ≔ 4

-3

𝑐)

𝑐*

𝑑*
𝑑)

𝑑* ≤ −3 no	reset
𝑑* > −3 ∧ 𝑑) ≤ −3 𝑑* ≔-3

Lecture Slides by Sayan Mitra
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Initialized Singular HA
v1
̇𝑐% = 1
̇𝑐& = 3
̇𝑑% = −3
̇𝑑& = −2

v2
̇̇𝑐% = −4

̇𝑐& = −2
̇𝑑% = −3
̇𝑑& = −2

𝑐) , 𝑐* ≔ 0; 𝑑) , 𝑑* ≔ 1

𝑐& ≤ 5 ∧ 𝑑# ≤ −3
𝑐& , 𝑐# ≔ 4

𝑐& ≤ 5 ∧ 𝑑& ≤ −3 ∧ 𝑑# > −3
𝑐& , 𝑐# ≔ 4 𝑑# ≔ −3

v3
̇̇𝑐) = −4

̇𝑐* = −2
̇𝑑) = 1
̇𝑑* = 2

𝑑) ≤ −5
𝑑)𝑑* ≔ −4

v4
̇̇𝑐) = 1

̇𝑐* = 3
̇𝑑) = 1
̇𝑑* = 2

𝑐# ≥ −3 ∧ 𝑑# ≤ −2
𝑐& ≔ −2𝑐# ≔ −1

𝑐# ≥ −3 ∧ 𝑑& ≤ −2 ∧ 𝑑# > −2
𝑐& ≔ −2𝑐# ≔ −1 𝑑# − 2

𝑐) ≥ 0 ∧ 𝑑) ≤2
𝑑) , 𝑑* ≔ 1

𝑐& < 0 ∧ 𝑐# ≥ 0 ∧ 𝑑& ≤2
𝑐& ≔ 0𝑑& , 𝑑# ≔ 1
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Can this be further generalized ? 

• For initialized Rectangular HA, control state 
reachability is decidable
– Can we drop the initialization restriction?
• No, problem becomes undecidable (next time)

– Can we drop the rectangular restriction?
• No, problem becomes undecidable
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Practical reachability

Lecture Slides by Sayan Mitra
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Tools: 
SpaceEX
CORA
C2E2
Flow*
DryVR



Data structures critical for reachability

• Hyperrectangles
– g!; g) = 𝑥 ∈ 𝑅+ x − g!

'
≤ g) − g!

'
} = Π,[𝑔!,, 𝑔),]

• Polyhedra
• Zonotopes [Girard 2005]
• Ellipsoids [Kurzhanskiy 2001]
• Support functions [Guernic et al. 2009]
• Generalized star set [Duggirala and Viswanathan 2018]
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Reachability in practice



C2E2 generated safety certificate for a given user 
model

Unsafe region

Reach set

Verify no collision with 
uncertainties: speeds in [70, 
85] mph and acceleration 
range of NPC 



For a different user model C2E2 finds a corner case

counter-example 
visualized

Verify no collision with 
uncertainties like speeds in [70, 85] 
mph and bigger acceleration range 
of NPC 

SAYAN MITRA   @Mitrasayn



Data structures: rectangles and 
ellipsoids

g12

g11

g21

g22

[[g11, g12]] [[g11, g12]]� [[g21, g22]]

= [[g11 + g12, g21 + g22]]

[[g11, g12]]� [[t.g1, t.g2]]

[[c1, Q]] [[Ac1, AQAT ]][[c1, Q1]]� [[c2, Q2]] 6= [[c3, Q3]]



Zonotopes and polytopes

[[A, b]]

[[g1, . . . , gk]] [[⇠(g1, t), . . . , ⇠(gk, t)]]

g1

g2

gk

c1 g1

g2

[[c1, hg1, g2i]]� [[c2, hg01, g02i]]
= [[c1 + c2, hg1, g01, g2, g02i]]

[[c1, hg1, g2i]] [[Ac1, hAg1, Ag2i]]



Takeaway messages

• For restricted classes of HA, e.g., ITA, IRHA, 
Control state reachability is decidable (Alur-Dill)

• The problem becomes undecidable for RHA 
(Henzinger et al.)
– Important message to re-focus on relaxed problem
– Bounded time, approximate reachability

• Many tools and successful applications using 
iterative Post computations

• Choice of data-structure critical for practical
performance
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