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This course so far 
• A modeling framework
– Discrete and continuous dynamics
– Compositional (modular) modeling

• General proof techniques for proving 
invariants



Next
• Focus on specific classes of Hybrid Automata for 

which safety properties (invariants) can be 
verified completely automatically
– Alur-Dill’s Timed Automata[1] (Today)
– Rectangular initializaed hybrid automata
– Linear hybrid automata
– …

• Later we will look at other types of properties like 
stability, liveness, etc.

• We will introduce notions of abstractions and 
invariance are still going to be important

[1] Rajeev Alur et al. The Algorithmic Analysis ofHybrid Systems. Theoretical Computer Science, 
colume 138, pages 3-34, 1995.

http://engr-courses.engr.illinois.edu/ece584/papers/aahs.pdf


Today

• Algorithmic analysis of (Alur-Dill’s) Timed Automata[1]
– A restricted class of what we call hybrid automata in this course with 

only clock variables

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer 
Science, 126:183-235, 1994.

http://engr-courses.engr.illinois.edu/ece584/papers/alur_dill94.pdf


Clocks and Clock Constraints
• A clock variable x is a continuous (analog) variable of type real such 

that along any trajectory 𝜏 of x, for all t ∈ 𝜏. 𝑑𝑜𝑚, 𝜏 ↓ 𝑥 𝑡 = 𝑡. 

• For a set X of clock variables, the set Φ(X) of integral clock 
constraints are expressions defined by the syntax:
g ::= x ≤ 𝑞 𝑥 ≥ 𝑞 ¬ 𝑔 | 𝑔3 ∧ 𝑔5
where 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑞 ∈ ℤ

• Examples: x = 10; x ∈ [2, 5); true are valid clock constraints
• What do clock constraints look like? 

• Semantics of clock constraints [𝑔]



Integral Timed Automata

• Definition. A integral timed automaton is a HIOA  
𝒜 = 〈𝑉, Θ, 𝐴, 𝒟, 𝒯〉 where 
– V = X ∪ 𝑙 , where 𝑋 is a set of n clocks and 𝑙 is a discrete 

state variable of finite type 𝐿
– A is a finite set 
– 𝒟 is a set of transitions such that 

• The guards are described by clock constraings Φ(𝑋)
• 𝑥, 𝑙 − 𝑎 → 𝑥K, 𝑙K implies either 𝑥K = 𝑥 or 𝑥 = 0

– 𝒯 set of clock trajectories for the clock variables in X



Example: Light switch
Math Formulation
automaton Switch

variables
internal x, y:Real := 0, loc: {on,off} := off

transitions
internal push

pre x ≥ 2
eff if loc = on then x := 0 

else x,y := 0; loc := off
internal pop

pre y = 15 /\ loc = off
eff x := 0

trajectories
invariant loc = off => y ≤ 15 
evolve d(x) = 1; d(y) = 1

Description
Switch can be turned on whenever at least 2 time 
units have elapsed since the last turn on. Switches 
off automatically 15 time units after the last on.



Control State (Location) Reachability Problem

• Given an ITA 𝒜, check if a particular (discrete) control state 
is reachable from the initial states

• Why is control state reachability (CSR) good enough? 

• This problem is decidable [Alur Dill]

• Key idea: 
– Construct a finite automaton that is a time-abstract bisimilar to 

the ITA (behaves identically with respect to control state 
reachability)

– Check reachability of FSM 



An equivalence relation with a finite quotient

• Under what conditions do two states x1 and x2 of the automaton  𝒜 behave 
identically with respect to control state reachability (CSR)?
– When do they satisfy the same set of clock constraints? 
– When would they continue to satisfy the same set of clock constraints? 

• x1. 𝑙𝑜𝑐 = x2.𝑙𝑜𝑐 and 
• x1 and x2 satisfy the same set of clock constraints

– For each clock 𝑦 int(x1.𝑦) = int(x2.𝑦) or int(x1.𝑦) ≥ 𝑐𝒜O and int(x2.𝑦) ≥ 𝑐𝒜O. 
(𝑐𝒜O is the maxium clock guard of 𝑦)

– For each clock 𝑦 with x1.𝑦 ≤ 𝑐𝒜O, frac(x1.𝑦) = 0 iff frac(x2.𝑦) = 0
– For any two clocks 𝑦 and 𝑧 with x1.𝑦 ≤ 𝑐𝒜O and x1.𝑧 ≤ 𝑐𝒜a, frac(x1.𝑦) ≤

frac(x1.𝑧) iff frac(x2.𝑦) ≤ frac(x2.𝑧)
• Lemma. This is a equivalence relation on val(V) the states of 𝒜

• The partition of val(V) induced by this relation is are called clock regions 



What do the clock regions look like?

Example of 
Two Clocks 

X = {y,z}
𝑐𝒜O = 2
𝑐𝒜a = 3



Complexity

• Lemma. The number of clock regions is 
bounded by |X|! 2|X|∏a∈c(2𝑐𝒜a + 2).



Region automaton R(𝒜)
Given an ITA 𝒜 = 〈𝑉, Θ, 𝒟, 𝒯〉, we construct the corresponding Region 
Automaton R 𝒜 = ⟨𝑄i, Θi, 𝐷i⟩ such that (i) R(𝒜) visits the same set of 
locations (but does not have  timing information) and (ii) R(𝒜) is finite state 
machine. 

• ITA (clock constants) defines a set of  clock regions, say C𝒜. The set of 
states 𝑄i = 𝐶𝒜×𝐿

• 𝑄o ⊆ 𝑄is the set of states contain initial set Θ of 𝒜

• 𝐷:We add the transitions between 𝑄 (regions)
– Time successors: Consider two clock regions 𝛾 and 𝛾K, we say that 𝛾K is a time successor 

of 𝛾 if there exits a trajectory of ITA starting from 𝛾 that ends in 𝛾’

– Discrete transitions: Same as the ITA

Theorem. A location of ITA 𝒜 is reachable iff it is also reachable in R 𝒜 .

(we say that R 𝒜 is time abstract bisimilar to 𝒜)



Time successors

The clock regions in blue are 
time successors of the clock 
region in red. 



Example 1: Region Automata

ITA

Corresponding FA



Example 2

ITA

Clock 
Regions



|X|! 2|X|∏a∈c(2𝑐𝒜a + 2)

Corresponding FA

Drastically increasing with the 
number of clocks



Special Classes of Hybrid Automata

– Timed Automata ß
– Rational time automata
– Multirate automata
– Rectangular Initialized HA

– Rectangular HA

– Linear HA 

– Nonlinear HA

Lecture Slides by Sayan Mitra
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Clocks and Rational Clock Constraints

• A clock variable x is a continuous (analog) variable of type real such that 
along any trajectory 𝜏 of x, for all t ∈ 𝜏. 𝑑𝑜𝑚, 𝜏 ↓ 𝑥 𝑡 = 𝑡. 

• For a set X of clock variables, the set Φ(X) of rational clock constraints are 
expressions defined by the syntax:

g ::= x ≤ 𝑞 𝑥 ≥ 𝑞 ¬ 𝑔 | 𝑔3 ∧ 𝑔5
where 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑞 ∈ ℚ

• Examples: x = 10.125; x ∈ [2.99, 5); true are valid rational clock constraints

• Semantics of clock constraints [𝑔]

Lecture Slides by Sayan Mitra
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Step 1. Rational Timed Automata

• Definition. A rational timed automaton is a HA 𝓐
= 〈𝑉, Θ, 𝐴, 𝒟, 𝒯〉 where 
– V = X ∪ 𝑙𝑜𝑐 , where 𝑋 is a set of n clocks and 𝑙 is a 

discrete state variable of finite type Ł
– A is a finite set 
– 𝒟 is a set of transitions such that 

• The guards are described by rational clock constraings Φ(𝑋)
• 𝑥, 𝑙 − 𝑎 → 𝑥K, 𝑙K implies either 𝑥K = 𝑥 or 𝑥 = 0

– 𝒯 set of clock trajectories for the clock variables in X

Lecture Slides by Sayan Mitra
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Example: Rational Light switch
Switch can be turned on whenever at least 2.25 time units have elapsed since the last 
turn off or on. Switches off automatically 15.5 time units after the last on.

automaton Switch
internal push; pop
variables

internal x, y:Real := 0, loc:{on,off} := off
transitions

push
pre x >=2.25
eff if loc = on then y := 0 fi; x := 0; loc := off

pop
pre y = 15.5 ∧ loc = off
eff x := 0

trajectories
invariant loc = on ∨ loc = off
stop when y = 15.5 ∧ loc = off
evolve d(x) = 1; d(y) = 1

Lecture Slides by Sayan Mitra
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Control State (Location) Reachability Problem

• Given an RTA, check if a particular location is 
reachable from the initial states

• Is problem decidable? 
• Yes
• Key idea: 
– Construct a ITA that is time-abstract bisimilar to 

the given RTA
– Check CSR for ITA

Lecture Slides by Sayan Mitra
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Construction of ITA from RTA
• Multiply all rational constants by a 

factor q that make them integral
• Make d(x) = q for all the clocks

• RTA Switch is bisimilar to ITA Iswitch

• Simulation relation R is given by 
• (u,s) ∈ 𝑅 iff u.x = 4 s.x and u.y = 4 s.y

automaton ISwitch
internal push; pop
variables

internal x, y:Real := 0, loc:{on,off} := off
transitions

push
pre x >=  9
eff if loc = on then y := 0 fi; x := 0; loc := off

pop
pre y = 62 ∧ loc = off
eff x := 0

trajectories
invariant loc = on ∨ loc = off
stop when y = 62 ∧ loc = off
evolve d(x) = 4; d(y) = 4

Lecture Slides by Sayan Mitra
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Step 2. Multi-Rate Automaton

• Definition. A multirate automaton is 𝓐 = 〈𝑉, 𝑄, Θ, 𝐴, 𝒟, 𝒯〉
where 
– V = X ∪ 𝑙𝑜𝑐 , where 𝑋 is a set of n continuous variables and 𝑙𝑜𝑐

is a discrete state variable of finite type Ł
– A is a finite set of actions
– 𝒟 is a set of transitions such that 

• The guards are described by rational clock constraings Φ(𝑋)
• 𝑥, 𝑙 − 𝑎 → 𝑥K, 𝑙K implies either 𝑥K = 𝑐 𝑜𝑟 𝑥K = 𝑥

– 𝒯 set of trajectories such that 
for each variable 𝑥 ∈ 𝑋 ∃𝑘 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜏 ∈ 𝒯, 𝑡 ∈ 𝜏. 𝑑𝑜𝑚

𝜏 𝑡 . 𝑥 = 𝜏 0 . 𝑥 + 𝑘 𝑡

Lecture Slides by Sayan Mitra
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Control State (Location) Reachability 
Problem

• Given an MRA, check if a particular location is 
reachable from the initial states

• Is problem is decidable? Yes
• Key idea: 
– Construct a RTA that is bisimilar to the given MRA

Lecture Slides by Sayan Mitra
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Example: Multi-rate to rational TA

Lecture Slides by Sayan Mitra
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Step 3. Rectangular HA
Definition. An rectangular hybrid automaton (RHA) is a HA 𝓐 = ⟨𝑉, 𝐴, 𝒯, 𝒟⟩
where 

– V = X ∪ 𝑙𝑜𝑐 , where X is a set of n continuous variables and 𝑙𝑜𝑐 is a 
discrete state variable of finite type Ł

– A is a finite set 
– 𝒯 =∪ℓ 𝒯ℓ set of trajectories for X

• For each 𝜏 ∈ 𝒯ℓ, 𝑥 ∈ 𝑋 either (i) 𝑑 𝑥 = 𝑘ℓ or (ii) 𝑑 𝑥 ∈ 𝑘ℓ3 , 𝑘ℓ5
• Equivalently, (i) 𝜏 𝑡 ⌈𝑥 = 𝜏(0)⌈𝑥 + 𝑘ℓ𝑡

(ii) 𝜏(0)⌈𝑥 + 𝑘ℓ3𝑡 ≤ 𝜏 𝑡 ⌈𝑥 ≤ 𝜏(0)⌈𝑥 + 𝑘ℓ5𝑡
– 𝒟 is a set of transitions such that 

• Guards are described by rational clock constraings  
• 𝑥, 𝑙 →� 𝑥K, 𝑙K implies 𝑥K = 𝑥 𝑜𝑟𝑥K ∈ [𝑐3, 𝑐5]

Lecture Slides by Sayan Mitra
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CSR Decidable for RHA?

• Given an RHA, check if a particular location is 
reachable from the initial states?

• Is this problem decidable? No 
– [Henz95] Thomas Henzinger, Peter Kopke, Anuj Puri, and Pravin Varaiya. 

What's Decidable About Hybrid Automata?. Journal of Computer and 
System Sciences, pages 373–382. ACM Press, 1995. 

– CSR for RHA reduction to Halting problem for 2 counter machines
– Halting problem for 2CM known to be undecidable
– Reduction in next lecture

Lecture Slides by Sayan Mitra
mitras@illinois.edu
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Step 4. Initialized Rectangular HA
Definition. An initialized rectangular hybrid automaton (IRHA) is a RHA 𝓐 where 

– V = X ∪ 𝑙𝑜𝑐 , where  X is a set of n continuous variables and  𝑙𝑜𝑐 is a 
discrete state variable of finite type Ł

– A is a finite set
– 𝒯 =∪ℓ 𝒯ℓ set of trajectories for X

• For each 𝜏 ∈ 𝒯ℓ, 𝑥 ∈ 𝑋 either (i) 𝑑 𝑥 = 𝑘ℓ or (ii) 𝑑 𝑥 ∈ 𝑘ℓ3 , 𝑘ℓ5
• Equivalently, (i) 𝜏 𝑡 ⌈𝑥 = 𝜏(0)⌈𝑥 + 𝑘ℓ𝑡

(ii) 𝜏(0)⌈𝑥 + 𝑘ℓ3𝑡 ≤ 𝜏 𝑡 ⌈𝑥 ≤ 𝜏(0)⌈𝑥 + 𝑘ℓ5𝑡
– 𝒟 is a set of transitions such that 

• Guards are described by rational clock constraings  
• 𝑥, 𝑙 →� 𝑥K, 𝑙K implies if dynamics changes from ℓ to ℓ′ then 𝑥K ∈
[𝑐3, 𝑐5], otherwise 𝑥K = 𝑥

Lecture Slides by Sayan Mitra
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Example: Rectangular Initialized HA

1

𝑑 𝑥3 = k3
𝑑 𝑥5 = k5

2

𝑑 𝑥3 = k′3
𝑑 𝑥5 = k5

3

𝑑 𝑥3 ∈ [𝑎, 𝑏]
𝑑 𝑥5 = k�

Pre 𝑥3 ≥ 𝐺 ∧ 𝑥5 ≤ 𝐺 Eff 𝑥3 ≔ 0

Both Pre 
𝑥3, 𝑥5 have 
to be reset

Eff 𝑥3, 𝑥5 ∈ [𝑐, 𝑑]

Lecture Slides by Sayan Mitra
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CSR Decidable for IRHA?

• Given an IRHA, check if a particular location is 
reachable from the initial states

• Is this problem decidable? Yes
• Key idea: 
– Construct a 2n-dimensional initialized multi-rate 

automaton that is bisimilar to the given IRHA
– Construct a ITA that is bisimilar to the Singular TA

Lecture Slides by Sayan Mitra
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Split every variable into two 
variables---tracking the upper 
and lower bounds

IRHA MRA

𝑥 𝑥ℓ ; 𝑥�

Evolve: 𝑑(𝑥) ∈ [𝑎3, 𝑏3] Evolve: 𝑑 𝑥ℓ = 𝑎3; 𝑑 𝑥� = 𝑏3

Eff: 𝑥K ∈ [𝑎3, 𝑏3] Eff: 𝑥ℓ= 𝑎3; 𝑥� = 𝑏3

𝑥K = 𝑐 𝑥ℓ= 𝑥� = 𝑐

Guard: 𝑥 ≥ 5 𝑥� ≥ 5

𝑥� < 5 ∧ 𝑥� ≥ 5 Eff 𝑥� = 5

Lecture Slides by Sayan Mitra
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Example IRHA

v1
�̇� ∈ 1,3

�̇� ∈ [−3,−2]

v2
�̇� ∈ −4,−2
�̇� ∈ [−3,−2]

𝑐 ≔ 0; 𝑑 ≔ 1

𝑐 ≤ 5 ∧ 𝑑 ≤ −3
𝑐 ≔ 4

v3
�̇� ∈ −4,−2
�̇� ∈ [1,2]

𝑑 ≤ −5
𝑑 ≔ −4

v4
�̇� ∈ 1,3
�̇� ∈ [1,2]

𝑐 ≥ −3 ∧ 𝑑 ≤ −2
𝑐 ∈ [−1,−2]

𝑐 ≥ 0 ∧ 𝑑 ≤2
𝑑 ≔ 1

Lecture Slides by Sayan Mitra
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Initialized Singular HA
v1
̇𝑐� = 1
̇𝑐� = 3
̇𝑑� = −3
̇𝑑� = −2

v2
̇̇𝑐� = −4

̇𝑐� = −2
̇𝑑� = −3
̇𝑑� = −2

𝑐�, 𝑐� ≔ 0; 𝑑�, 𝑑� ≔ 1

v3
̇̇𝑐� = −4

̇𝑐� = −2
̇𝑑� = 1
̇𝑑� = 2

v4
̇̇𝑐� = 1

̇𝑐� = 3
̇𝑑� = 1
̇𝑑� = 2

Lecture Slides by Sayan Mitra
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Transitions

5

v1
̇𝑐� = 1
̇𝑐� = 3
̇𝑑� = −3
̇𝑑� = −2

𝑐� ≤ 5
𝑐�, 𝑐� ≔ 4

-3

𝑐�

𝑐�

𝑑�
𝑑�

𝑑� ≤ −3 no	reset
𝑑� > −3 ∧ 𝑑� ≤ −3 𝑑� ≔-3

Lecture Slides by Sayan Mitra
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Initialized Singular HA
v1
̇𝑐� = 1
̇𝑐� = 3
̇𝑑� = −3
̇𝑑� = −2

v2
̇̇𝑐� = −4

̇𝑐� = −2
̇𝑑� = −3
̇𝑑� = −2

𝑐�, 𝑐� ≔ 0; 𝑑�, 𝑑� ≔ 1

𝑐� ≤ 5 ∧ 𝑑� ≤ −3
𝑐�, 𝑐� ≔ 4

𝑐� ≤ 5 ∧ 𝑑� ≤ −3 ∧ 𝑑� > −3
𝑐�, 𝑐� ≔ 4 𝑑� ≔ −3

v3
̇̇𝑐� = −4

̇𝑐� = −2
̇𝑑� = 1
̇𝑑� = 2

𝑑� ≤ −5
𝑑�𝑑� ≔ −4

v4
̇̇𝑐� = 1

̇𝑐� = 3
̇𝑑� = 1
̇𝑑� = 2

𝑐� ≥ −3 ∧ 𝑑� ≤ −2
𝑐� ≔ −2𝑐� ≔ −1

𝑐� ≥ −3 ∧ 𝑑� ≤ −2 ∧ 𝑑� > −2
𝑐� ≔ −2𝑐� ≔ −1 𝑑� − 2

𝑐� ≥ 0 ∧ 𝑑� ≤2
𝑑�, 𝑑� ≔ 1

𝑐� < 0 ∧ 𝑐� ≥ 0 ∧ 𝑑� ≤2
𝑐� ≔ 0𝑑�, 𝑑� ≔ 1
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Can this be further generalized ? 

• For initialized Rectangular HA, control state 
reachability is decidable
– Can we drop the initialization restriction?
• No, problem becomes undecidable (next time)

– Can we drop the rectangular restriction?
• No, problem becomes undecidable

Lecture Slides by Sayan Mitra
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Verification in tools

Lecture Slides by Sayan Mitra
mitras@illinois.edu



Data structures make reachability go around

• Hyperrectangles
– g3; g5 = 𝑥 ∈ 𝑅� x − g3

�
≤ g5 − g3

�
} = Π�[𝑔3�, 𝑔5�]

• Polyhedra
• Zonotopes [Girard 2005]
• Ellipsoids [Kurzhanskiy 2001]
• Support functions [Guernic et al. 2009]
• Generalized star set [Duggirala and Viswanathan 2018]
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Reachability Computation with polyhedra

• A set of states is 
represented by 
disjunction of linear 
inequalities
– 𝑙𝑜𝑐 = 𝑙3 ∧ 𝐴3𝑥 ≤ 𝑏3 ∨

𝑙𝑜𝑐 = 𝑙5 ∧ 𝐴5𝑥 ≤ 𝑏5 ∨
⋯

• Post(,) computation 
performed symbolically 
using quantifier 
eliminationPortion of Navigation benchmark

𝑥K = 𝑘 → 𝑃𝑜𝑠𝑡 𝑎3, 𝑎5 = ∃𝑡 𝑎3 + 𝑘𝑡, 𝑎5 + 𝑘𝑡 = [𝑎3,∞]
the state is reachable if there exists a time when we reach it.
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Summary

• ITA: (very) Restricted class of hybrid automata
– Clocks, integer constraints
– No clock comparison, linear

• Control state reachability with Alur-Dill’s algorithm 
(region automaton construction)

• Rational coefficients
• Multirate Automata
• Initialized Rectangular Hybrid Automata
• HyTech, PHAVer use polyhedral reachability 

computations
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