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Progress properties Invariance/safety

• Every behavior system 𝒜 will 
eventually reach a goal goal
• CTL: AF goal
• Dijkstra: From any state, (possibly >1 

tokens) all executions get to a state 
with 1 token

• No behavior of A goes outside of 
unsafe
• CTL: AG unsafe
• Dijkstra: Starting a state with a 1 

token, all executions have 1 token
• Finding a counterexample to safety 

does not prove progress



Proving termination for automata

• Automaton 𝒜 = (𝑉, Θ,𝑫)
• Recall 𝑫 ⊆ 𝑣𝑎𝑙 𝑉 ×𝑣𝑎𝑙(𝑉)
• Automaton terminates if it does not have any infinite executions

• Definition. A well-founded relation < on a set S is a binary relation <⊆ 𝑆 ×𝑆
such that every subset 𝑆0 ⊆ 𝑆 has a least element. 
• In other words, there are no infinite decreasing chains of elements 𝑠2, 𝑠3, … , with 
𝑠563 < 𝑠5.
• Example: 𝑆 = ℤ a < b iff a divides b and a ≠ b
• Example: 𝑆 = 0,1 ∗ a < b iff a is a proper substring of b



Proving termination for automata 

Theorem. Automaton 𝒜 = (𝑉, Θ,𝑫) terminates iff there exists a well-founded 
relation 𝑅 such that 𝑫 ∩ 𝑅𝑒𝑎𝑐ℎ𝒜×𝑅𝑒𝑎𝑐ℎ𝒜 ⊆ 𝑅.

Proof. If there exists 𝑅 and automaton does not terminate. 
Then there exists an infinite sequence of states 𝑠2, 𝑠3, … , with 𝑠5 𝑫 𝑠563. Since these 
are reachable states, 𝑠5 𝑅 𝑠563 which violates the definition of a well-founded 
relation. 
Suppose 𝒜 is terminating, we define 
𝑅 = 𝑫 ∩ 𝑅𝑒𝑎𝑐ℎ𝒜×𝑅𝑒𝑎𝑐ℎ𝒜
check that 𝑅 is indeed well-founded (because 𝑫 does not permit infinite 
sequences)



Ranking functions

Often the well-founded relation is defined in terms of a ranking 
function 𝑓: val 𝑉 → ℕ such that for any reachable 𝒗 ∈ 𝑣𝑎𝑙 𝑉 ,
𝑎𝑛𝑑 𝒗0𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝒗, 𝒗0 ∈ 𝐷, 𝑓 𝒗0 < 𝑓(𝒗)

Here < is a the usual comparison on integers

Instead of ℕ, the ranking function could use any other range set with a 
lower bound



Example

Consider the ranking function 𝑓 𝑥, 𝑦 = 2𝑥 + 𝑦

Check that for any transition 𝑥, 𝑦 → 𝑥0, 𝑦0
Up(1) 2𝑥0 + 𝑦0 = 2 𝑥 − 1 + 𝑦 + 1 = 2𝑥 + 𝑦 − 1 = 𝑓 𝑥, 𝑦 − 1 < 𝑓(𝑥, 𝑦)
Down: 2𝑥0 + 𝑦0 = 2𝑥 + 𝑦 − 1 = 𝑓 𝑥, 𝑦 − 1 < 𝑓(𝑥, 𝑦)
Hence, the automaton terminates

What if d > 1 ?



Recall Stability

• Time invariant autonomous systems (closed systems, systems without 
inputs) 
• �̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑥2 ∈ ℝV, 𝑡2 = 0 –(1)
• 𝜉 𝑡 is the solution
• |𝜉 𝑡 | norm
• 𝑥∗ ∈ ℝV is an equilibrium point if 𝑓 𝑥∗ = 0.
• For analysis we will assume 0 to be an equilibrium point of (1) with 

out loss of generality
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Lyapunov stability

Lyapunov stability: The system (1) is said to be Lyapunov stable (at the 
origin) if for every 𝜀 > 0 there exists 𝛿] > 0 such that for every if 
𝜉 0 ≤ 𝛿] then for all t ≥ 0, 𝜉 𝑡 ≤ 𝜀.

𝛿]

𝜀
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Asymptotically stability

The system (1) is said to be Asymptotically stable (at the origin) if it is 
Lyapunov stable and there exists 𝛿a > 0 such that for every if 𝜉 0 ≤ 𝛿a
then t → ∞, 𝜉 𝑡 → 𝟎.

If the property holds for any 𝛿a then Globally Asymptotically Stable
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Defining stability of hybrid systems

• Hybrid automaton: 𝐀 = ⟨𝑉, 𝐴, 𝐷, Τ⟩
• 𝑉 = 𝑋 ∪ {ℓ}

• Execution 𝛼 = 𝜏2𝑎3𝜏3𝑎a …

• Notation 𝛼(𝑡): denotes the valuation 𝛽. 𝑙𝑠𝑡𝑎𝑡𝑒 where 𝛽 is the longest prefix with 
𝛽. ltime = 𝑡

• |𝛼 𝑡 |: norm of the continuous state 𝑋
• A is Lyapunov stable (at the origin) if for every 𝜀 > 0 there exists 𝛿] > 0 such that 

for every if 𝛼 0 ≤ 𝛿] then for all t ≥ 0, 𝛼 𝑡 ≤ 𝜀.

• Asymptotically stable if it is Lyapunov stable and there exists 𝛿a > 0 such that for 
every if 𝛼 0 ≤ 𝛿a then t → ∞, 𝛼 𝑡 → 𝟎.

mode 1
𝑑 𝑥 = 𝑓3(𝑥)

mode 2
𝑑 𝑥 = 𝑓a(𝑥)

Pre 𝐺3a Eff 𝑥 ≔ 𝑅3a(𝑥)
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Question:Stability Verification

• If each mode is asymptotically stable 
then is A also asymptotically stable?
• No

Proof Techniques: Stability
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Common Lyapunov Function

• If there exists positive definite continuously differentiable function 
𝑉:ℝV → ℝ and a positive definite function W: ℝV → ℝ such that for 
each mode 𝑖, wx

wy
𝑓5 𝑥 < −𝑊(𝑥) for all 𝑥 ≠ 0 then V is called a 

common Lyapunov function for A. 

• 𝑉 is called a common Lyapunov function

• Theorem. A is GUAS if there exists a common Lyapunov function. 
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Multiple Lyapunov Functions

• In the absence of a common lyapunov function the stability verification has 
to rely of the discrete transitions. 

• The following theorem gives such a stability in terms of multiple Lyapunov
function. 

• Theorem [Branicky] If there exists a family of positive definite continuously 
differentiable Lyapunov functions 𝑉5: ℝV → ℝ and a positive definite 
function W}:ℝV → ℝ such that for any execution 𝛼 and for any time 𝑡3 𝑡a
𝛼 𝑡3 . ℓ = 𝛼 𝑡a . ℓ = 𝑖 and for all time 𝑡 ∈ 𝑡3, 𝑡a , 𝛼 𝑡 . ℓ ≠ 𝑖
• 𝑉5 𝛼 𝑡a . 𝑥 − 𝑉5 𝛼 𝑡3 . 𝑥 ≤ −𝑊5(𝛼 𝑡3 . 𝑥)
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time

)(tVi

V2 £ 𝜇 V1

• Average Dwell Time (ADT) characterizes rate of mode switches
• Definition: H has ADT T if there exists a constant N0 such that for every execution 

α, 
N(α) £ N0 + duration(α)/T. 

N(α): number of mode switches in α

• Theorem [HM`99] H is asymptotically stable if its modes have a set of Lyapunov
functions (𝜇, 𝜆2) and ADT(H) > log 𝜇/𝜆2 .

Stability Under Slow Switching

mode 1 mode 2 mode 2mode 1

[Hespanha and Morse`99]

Proof Techniques: Stability

𝜕𝑉5
𝜕𝑥 ≤ −2𝜆2𝑉5(𝑥)
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Remarks about ADT theorem assumptions

1. If 𝑓5 is globally asymptotically stable, then there exists a Lyapunov
function 𝑉5 that satisfies wx�

w�
≤ −2𝜆5𝑉5 𝑥 for appropriately chosen 

𝜆5 > 0
2. If the set of modes is finite, choose 𝜆2 independent of 𝑖
3. The other assumption restricts the maximum increase in the value of 

the current Lyapunov functions over any mode switch, by a factor of μ. 
4. We will also assume that there exist strictly increasing functions 𝛽3and 

𝛽a such that 𝛽3(|𝑥|) ≤ 𝑉5 𝑥 ≤ 𝛽a(|𝑥|) 
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Proof sketch
Suppose 𝛼 is any execution of A. 

Let 𝑇 = 𝛼. 𝑙𝑡𝑖𝑚𝑒 and 𝑡3, … , 𝑡� � be instants of mode switches in 𝛼.

We will find an upper-bound on the value of 𝑉� � .� 𝛼 𝑇 . 𝑥

Define 𝑊 𝑡 = 𝑒a��y𝑉� y .�(𝛼 𝑡 . 𝑥)

𝑊 is non-increasing between mode switches wx�
w�

≤ −2𝜆2𝑉5 𝑥

That is, 𝑊 𝑡563� ≤ 𝑊 𝑡5

𝑊 𝑡563 ≤ 𝜇𝑊 𝑡563� ≤ 𝜇𝑊 𝑡5
Iterating this 𝑁 𝛼 times: 𝑊 𝑇 ≤ 𝜇�(�)𝑊 0

𝑒a���𝑉� � .� 𝛼 𝑇 . 𝑥 ≤ 𝜇� � 𝑉� 2 .�(𝛼 0 . 𝑥)
𝑉� � .� 𝛼 𝑇 . 𝑥 ≤ 𝜇� � 𝑒�a���𝑉� 2 .�(𝛼 0 . 𝑥) = 𝑒�a���6� � ��� �𝑉� 2 .�(𝛼 0 . 𝑥)

If 𝛼 has ADT 𝜏� then, recall, 𝑁 𝛼 ≤ 𝑁2 + 𝑇/𝜏� and 𝑉� � .� 𝛼 𝑇 . 𝑥 ≤
𝑒�a���6(��6�/��) ��� �𝑉� 2 .�(𝛼 0 . 𝑥) ≤ 𝐶 𝑒�(�a��6��� � /��)

If 𝜏� > log 𝜇 /2𝜆2 then second term converges to 0 as 𝑇 → ∞ then from assumption 4 it follows that 𝛼
converges to 0.
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Further reading

• More general conditions for termination proofs of automata 
(Disjunctive unions of well-founded relations) [Podelski and 
Rybalchenko]
• Verification of dwell time [Mitra and Liberzon]
• Abstractions for stability proofs [Prabhakar et al., Duggirala et al.]
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