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* Dynamical system models
— notions of solutions
— Linear dynamical systems
— Connection to automata
— Stability
— Lyapunov method



Map of CPS models

Dynamical systems
Discrete transition Differential Markov chains

systems, automata inclusions 1

Probabilistic automata,
Markov decision processes
(MDP)

Continuous time,
continuous state MDPs

! !

Stochastic Hybrid systems

Hybrid systems
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All this was in the two plague years 1665 and 1666, for in those
days | was in my prime of age for invention, and minded
mathematics and philosophy more than at any time since.

---Isaac Newton

From: Wilczek, Frank. A Beautiful Question: Finding Nature's Deep Design (p. 87).



Introduction to dynamical systems

Behaviors of physical processes are described in terms of instantaneous laws

Common notation: dfl—(tt) = f(x(t),u(t),t) — (1),
where time t € R; state x(t) € R"; input u(t) € R™; f:R" X R™ X R - R"

dx(t) dv(t)

v(t);

Example.

Initial value problem: Given system (1) and initial state x, € R", t, € R, and input
u: R - R™, find a state trajectory or solution of (1).



Notions of solution

What is a solution? Many different notions.

(First attempt) Given x5 and u, &: R — R" is a solution
or trajectory iff

(1)¢(ty) = xo and
(25 = FED,u®), 1), vt € R.

Mathematically makes sense, but too restrictive. Assumes that € is
not only continuous, but also differentiable. This disallows u(t) to be

discontinuous, which is often required for optimal control.



Getting from point a to point b
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Modified notion

Definition. u(-) is a piece-wise continuous with set of discontinuity
points D € R™ if

(1) VTt €D, lim u(t) < oo; lim u(t) < oo u(t)
t>t?t t>T~
(2) Continuous from right tlim+ u(t) = u(t)
-7
(3) Vity,<ty,|tyti] N D isfinite

PC([ty, t1], R™) is the set of all piece-wise continuous functions over
the domain [t,, t1]

Define p(é(t),t) = f(x(t),u(t),t), for a given u(t). Since u(t) is PC
in t so is p in the second argument.

Definition 2. Given x, and u, &: R = R™ is a solution or trajectory iff
d
(1) £(to) = xp and (2) = &(£) = p(§(£),£), ¥t € R\D.
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Is PC input u(t) adequate for guaranteeing
existence of solutions?

Example. x(t) = —Sgn(x(t));xo =C;ty=0;c>0
Solution: é(t) = ¢ — t fort < c; check § = —1
Problem: f discontinuous is x

Example. x(t) = x%;xq = ¢;ty = 0;¢ > 0

Solution: &(t) = 1—th works for t < 1/c; check &

Problem: As t — %then x(t) — oo; p grows too fast




Lipschitz continuity

A function f: R"™ = R is Lipschitz continuous if there exist L > 0
such that for any pair x,x’ € R", ||f(x) — f(x')l‘ < L||x — x’||

Examples: 6x + 4; |x|; all differentiable functions with bounded
derivatives

Non-examples: 1/x; x* (locally Lipschitz)



Existence and uniqueness of solutions

Theorem. If p(x(t), x) is Lipschitz continuous in the first
argument then (1) has unique solutions.

Transition system model



Linear time-varying systems

In general, for nonlinear dynamical systems we do not have closed form solutions for é(t), but there are numerical
solvers like CAPD, VNODE

x(t) = A(O)x(t) + B(H)u(t) - (2)
y(©) = C(©)x() + D(O)u(t)

u(t) continuous everywhere except D,

Theorem. Let &(t, ty, X, u) be the solution for (2) with points of discontinuity, D,

1. Vty €ER xy € R*,u e PC(R,R™), &(-, ty, X9, u): R - R™ is continuous and differentiable V¢t € R\ D,

2. Vt ity € R,u € PC(R,R™), é(t, ty,,, u): R®™ - R™ is continuous

3.Vt tyg € R xq1, %02 € RYugu; € PC(R,R™),aq,a;, € R, E(L, tg, arxgr + azXgy, a1y + azuy) =
a;&(t, to, Xo1, ug) + a8 (t, to, Xo2, Up)

4. Vit to € R xy € RY,u € PC(R,R™),E(L, ty, xo,u) = (8, tg, x9,0) + E(L, ty, 0, 1)



Example 1: Simple model of an economy

e x: national income
* y: rate of consumer spending
* g:rate government expenditure

201 income () 7]
\‘\ spending (y)
o o . 15 \‘ ==+ Lyapunov function (V) |
X=X —ay \\
. LA ™\
*y=px—-y—g) STNINT
\ T~ 1

~
i —




Linear system and solutions

x(t) = A(t)x(t) + B(t)u(t)

For a given initial state x, € R",t, € Rand u(.) € PC(R, R™)
the solution is a function &(., ty, xg, u): R - R"

We studied several properties of € in the last lecture: continuity
with respect to first and third argument, linearity, decomposition



Linear system and solutions

Since £(., ty, xg, u): R = R" is a linear function of the initial
state and input,

E(t, to, xg,u) = E(L, £0, 0,u) + &(., £y, X, 0)

Let us focus on the linear function &(., ty, xg, 0)

Define ®(., ty)xg = £(., ty, Xo, U)

This ®(., ty):R - R™ ™ is called the state transition matrix




Properties of &

d(.,ty): R » R™ ™ js the unique solution of (2) and is defined by a (Peano-
0

Baker) infinite sequence of integrals

%q)(t' ty) = A(t)DP(t, ty) with d(t,t) =1

— Continuous everywhere

— Differentiable everywhere except D, (A(t) isn’t)
Vitg, t1,t P(t, ty) = ©(t,t)P(t, tp)
d(t,ty) is invertible [®(t,ty)]™! = P (ty, t)



Solution of linear systems in @

Theorem.
t

E(t, ty, xo,u) = O(t, ty)xg +f d(t,7)B(t)u(r)dr



Linear time invariant system

x(t) = Ax(t) + Bu(t)

Matrix exponential:

edt =1+ At + —(At)2 = (At)*"

Theorem. ®(t,t,) = eA(=t) that is
L

eAt=D) By (1)dt
Lo

(t, to, xo, U) = xpe’(tto) 4
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Discrete time models / discrete transition systems

s x(t+1) = f(x(0), u(®))
 x(t+1) = f(x(t)) autonomous
e Execution: xg, f (xg), f%(xp), ...

* A=(Q,0Q0T)

- Q =R",Qp = {x0}
—T:R" > R",;T(x) = f(x)

e Deterministic



Discretized or sampled-time model

2(t) = f(x(®),u(®))

Assume: u € PC(R,U) where U € R™ is a finite set
€(t' tO'xO:u)

Fix a sampling period 6 > 0

As =(0Q,0Q0,U,T)

—Q =R"0Qy ={xp},Act = U,

— TS R**}UX R (x,u,x") e Tiff x' =&(65,0,x,u)



Properties for dynamical systems

What type of properties are we interested in?
* |nvariance (as in the case of automata)

e State remains bounded

* Converges to target

 Bounded input gives bounded output (BIBO)



Requirements: Stability

We will focus on time invariant autonomous systems (closed
systems, systems without inputs)

x(t) = f(x(£)),xo € Rty =0 —(1)

&(t) is the solution

$(t)] norm

x* € R™ is an equilibrium point if f(x*) = 0.

For analysis we will assume 0 to be an equilibrium point of (1)
with out loss of generality



Example: Pendulum

Pendulum equation

x1=9 x2=9

k: friction coefficient

Two equilibrium points: (0,0), (m, 0)






Aleksandr M. Lyapunov

Aleksandr Mikhailovich Lyapunov (June 6
1857—-November 3, 1918) was a Russian
mathematician and physicist.

His methods make it possible to define the
stability of ordinary differential equations. In
the theory of probability, he generalized the
works of Chebyshev and Markov, and proved
the Central Limit Theorem under more general
conditions than his predecessors.
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Lyapunov stability

Lyapunov stability: The system (1) is said to be Lyapunov stable
(at the origin) if

Ve > 036, >0suchthat |xy| < 6. =2Vt=>0,]|8(xy, t)| < &.

How is this related to
invariants and 5.
reachable states ? £




Asymptotically stability

The system (1) is said to be Asymptotically stable (at the origin)
if it is Lyapunov stable and

36,> 0 such that Vx| < §, ast = oo, |E(xp, t)| = O.

If the property holds for any §, then Globally Asymptotically
Stable

02



Phase portrait of pendulum with friction




Butterfly*

X5 2X1X

X1l I — x3

All solutions converge to O
but the equilibrium point
(0,0) is not Lyapunov stable

*Not discussed in class
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Van der pol oscill

Van der pol oscillator
dx?
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Stability of solutions™ (instead of points)

For any ¢ € PC(R?Y, R™) define the s-norm |I€I|S = sup||E(t)]]
teR

A dynamical system can be seen as an operator that maps initial states to signals
T:R™ - PC(R=%, R™)

Lyapunov stability required that this operator is continuous

The solution ¢ is Lyapunov stable if T is continuous as £°(0) . i.e., for every € >
0 there exists 6, > 0 such that for every xo € R" if |E*(0) — x| < 6, then

172" ®) ~T&o)l| <.

*Not discussed in class



Verifying Stability for Linear Systems

Consider the linear system x = Ax

Theorem.

1. It is asymptotically stable iff all the eigenvalues of A have strictly negative
real parts (Hurwitz).

2. It is Lyapunov stable iff all the eigenvalues of A have real parts that are
either zero or negative and the Jordan blocks corresponding to the
eigenvalues with zero real parts are of size 1.



Jordan decomposition

For every n x n matrix A, there exists a nonsingular n x n matrix P such that

0 O
Jr 0
0 Js
0 O

A 1 0 0
0 4 1 ... 0
=10 0 A4 ... 0
0 0 0 .. A

where each J; is a upper triangular matrix called a Jordan block



Example 1: Simple model of an economy

x: national income y: rate of consumer spending; g: rate government
expenditure

X=x —ay
y=Bx-y—g)

g =go+ kx a, 5, k are positive constants
What is the equilibrium?
* Jo — Jo&
a—1—-ka y a—1—-ka
Dynamics:

’ iii - [ﬁ(ll— k) :gi iii



Example: Simple linear model of an economy

ca=38=1k=0

* Negative real parts, therefore,
asymptotically stable and the
national income and consumer

spending rate converge to x =
1.764 y = 5.294

Income and Spending

25

— National income

20t | — Rate of consumer spending |

— Lyapunov function




Stability of nonlinear systems

* For any positive definite function of state V: R" - R
—V(x)=>0andV(x) =0iffx =0
* Sublevel sets of L, = {x € R™" | V(x) < p}

* V(&(D))

V differentiable with continuous first derivative
= g YD)y

. Z—Z.% (E(t)) = Z—Z.f(x) is also continuous

* IV isradially unbounded if Hxl‘ —» o= V(x) >



Verifying Stability

Theorem. (Lyapunov) Consider the system (1) with state space
¢(t) € R™ and suppose there exists a positive definite,
continuously differentiable function I/: R™ — R. The system is:

1. Lyapunov stable if V(E(t)) = Z—Zf(x) <0, forallx =0

2. Asymptotically stable if V(f(t)) <0, forallx #0
3. Itis globally AS if Vis also radially unbounded.



Proof sketch: Lyapunov stable if V < 0

AssumeV < 0

Consider a ball B, around the origin of
radius € > 0.

Pick a positive number b < Irr}in V(x).
X|=E&

Let 0 be a radius of ball around origin
which isinside Bs = {x |V (x) < b}
Since along all trajectories V is non-
increasing, starting from Bg each
solution satisfies V(E(t)) < b and
therefore remains in B,

(7

(&




Proof sketch: Asymptotically stable if V(f(t)) <0

Assume V < 0

Take arbitrary initial state [£(0)| < &, where this § comes from some ¢
for Lyapunov stability

Since V(f(.)) > 0 and decreasing along ¢ ithasalimitc > 0att - o
It suffices to show that this limit is actually O

Suppose not, ¢ > 0 then the solution £(0) evolves in the compact set
S ={x|r < |x| < &} for some sufficiently small r B

Letd = max V(x) [slowest rate] \ ’
This numT)Eer is well-defined and negative ~~*~~"~-‘~L\\\\\\\\\,\\\\\\?~~
V(E(t)) < dforallt \ %\\\\\

V() <V(0) + dt ” \\

But then eventually V(t) < ¢

y




Example 2: Reasoning about stability without solving ODEs

X1 = —x1 + g(x3); X5 = —x5 + h(x4)

Given that [g(x)| < 22!, |n(xy)] < 22

1 %1 = —x1 + 9g(x2)

. UseV-—(xl +x2)>0

¢ V=x1x1+x2562

—x{ —x5 +x19(x2) + x2h(x1)

1
< —x{ —x3 +3 (Jx1x2] + |x2%1])

1
S—E(xlz+x§) = —

We conclude global asymptotic stability (in fact global
exponential stability) without knowing solutions

.X'Z — _xZ + h(xl)

(Ix1 ]| = |xz|)2 >0

xi + x5 = 2|x1%5]

1
|1, | < E(x1 + xz)




Proposition. If V is a Lyapunov function then every sublevel set
of Vis an invariant

Proof. V(E(t)) =
= V() + [, V(¢(@)de
< V(£(0))



An aside: Checking inductive invariants

A = (X, Co, T)
— X: set of variables
— Qp S val(X)
— T S val(X)xval(X) written as a program x' € T (x)
How do we check that I € val(X) is an inductive invariant?
— Qo = I(X)
- I1(X) = I(T(X))
Implies that Reach4(Q,) € I without computing the executions or reachable
states of A
The key is to find such I



Finding Lyapunov Functions

* The key to using Lyapunov theory is to find a Lyapunov
function and verify that it has the properties

* |n general, for nonlinear systems this is hard

 There are several approaches

— Quadratic Lyapunov functions for linear systems

— Decide the form/template of the function (e.g., quadratic,
polynomial), parameterized by some parameters and find values of
the parameters so that the conditions hold (Chapter 3 last section)



Linear autonomous systems

x = Ax, A € R™*"
The Lyapunov equation: ATP + PA+Q =0
where P, Q € R™™ are symmetric

Interpretation: V(x) = xT Px then
V(x) = (Ax)TPx + xTP(Ax)
: : ou'Pv _ ou o
[using chain rule o = 5 PVt P uj
=xT(ATP + PA)x = —xTQx

If xT Px is the generalized energy then —x” Qx is the associated dissipation



Quadratic Lyapunov Functions

If P > 0 (positive definite)

Vix) =x"Px =0 x=0

The sub-level sets are ellipsoids

If Q > 0 then the system is globally asymptotically stable



Same example

Lyapunov equations are solved as a set of
n(n+1)

O(n®)

Choose Q = [(1) (1)] solving Lyapunov

2.59 =2.29

—229 492 1°
we get the quadratic Lyapunov function

(x — x*)P(x — x*)T an a sequence of
invariants

equations we get P =

equations inn(n + 1)/2 variables. Cost

nd
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Converse Lyapunov

Converse Lyapunov theorems show that conditions of the previous

theorem are also necessary. For example, if the system is asymptotically
stable then there exists a positive definite, continuously differentiable

function V, that satisfies the inequalities.

For example if the LTI system x = Ax is globally asymptotically stable then
there is a quadratic Lyapunov function that proves it.



Small puzzle

* Platonic solids. Solid bodies whose faces are regular polygons,
all identical, that meet in identical fashion at every vertex. How
many such are there? Exactly five!

0099

Tetrahedron Icosahedron Dodecahedron Octahedron Cube

Platonic solids.
Wilczek, Frank. A Beautiful Question: Finding Nature's Deep Design (p. 39).



