
Modeling Cyberphysical Systems

Sayan Mitra
Verifying cyberphysical systems

mitras@illinois.edu

mailto:mitras@illinois.edu

Map of CPS models

Discrete transition
systems, automata

Lecture Slides by Sayan Mitra mitras@illinois.edu

Markov chains

Probabilistic automata,
Markov decision processes
(MDP)

Continuous time,
continuous state MDPs

Stochastic Hybrid systems

Dynamical systems
Differen>al
inclusions

Hybrid systems

Outline

• Hybrid automata
• Execu>ons
• Urgency
• Zeno
• Hybrid stability

Bouncing Ball: Hello world of CPS

automaton Bouncingball(c,h,g)

variables: x: Reals := h, v: Reals := 0

actions: bounce

transitions:

bounce

pre x = 0 /\ v < 0

eff v := -cv

trajectories:

Loc1

evolve d(x) = v; d(v) = -g

invariant 𝒙 ≥ 𝟎

Loc 1
𝑑 𝑥 = 𝑣
𝑑 𝑣 = −𝑔
𝒙 ≥ 𝟎

Graphical Representation used in
many articles

bounce
x = 0 /\ v < 0

v’ := -cv

x:= h

Lecture Slides by Sayan Mitra mitras@illinois.edu

mode invariant,
not to be

confused with
invariants of the

automaton

Recall from Lecture 1. language defines an automaton

An automaton is a tuple 𝒜 = 〈𝑋, Θ, 𝐴, 𝒟〉 where
• 𝑋 is a set of names of variables; each variable 𝑥 ∈
𝑋 is associated with a type, 𝑡𝑦𝑝𝑒(𝑥)
• A valuation for 𝑋 maps each variable in X to its type
• Set of all valuations:𝑣𝑎𝑙 𝑋 this is sometimes identified

as the state space of the automaton

• Θ ⊆ 𝑣𝑎𝑙(𝑋) is the set of initial or start states

• 𝐴 is a set of names of actions or labels

• 𝒟 ⊆ 𝑣𝑎𝑙 𝑋 ×𝐴×𝑣𝑎𝑙 𝑋 is the set of transitions
• a transition is a triple (𝑢, 𝑎, 𝑢’)
• We write it as 𝑢 →@ 𝑢′

automaton DijkstraTR(N:Nat, K:Nat), where K > N
type ID: enumeration [0,...,N-1]
type Val: enumeration [0,...,K]
actions

update(i:ID)
variables

x:[ID -> Val]
transitions

update(i:ID)
pre i = 0 /\ x[i] = x[N-1]
eff x[i] := (x[i] + 1) % K

update(i:ID)
pre i >0 /\ x[i] ~= x[i-1]
eff x[i] := x[i-1]

Trajectories
Given a set of variables 𝑋 and a Ome interval 𝐽 which can be of the form
0, 𝑇 , 0, 𝑇 𝑜𝑟 [0,∞), a trajectory for 𝑋 is a funcOon 𝜏: 𝐽 → 𝑣𝑎𝑙(𝑋)

We will specify 𝜏 as soluOons of differenOal equaOons

The first state of a trajectory 𝜏. 𝑓𝑠𝑡𝑎𝑡𝑒: = 𝜏(0)
If 𝜏 is right closed then the limit state of a trajectory 𝜏. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝜏(𝑇)
If 𝜏 is finite then duraOon of 𝜏 is 𝜏. 𝑑𝑢𝑟 = 𝑇
The domain of 𝜏. 𝑑𝑜𝑚 = 𝐽
A point trajectory is a trajectory with 𝜏. 𝑑𝑜𝑚 = [0,0]
OperaOons on trajectories: prefix, suffix, concatenaOon

A prefix 𝜏′ of a trajectory 𝜏: 0, 𝑇 → 𝑣𝑎𝑙(𝑋), is a funcOon 𝜏P: 0, 𝑇P → 𝑣𝑎𝑙(𝑋)
such that 𝑇P ≤ 𝑇 and 𝜏P 𝑡 = 𝜏 𝑡 for all 𝑡 ∈ 𝜏P. 𝑑𝑜𝑚

Hybrid Automaton

𝓐= 𝑋, Θ, 𝐴, 𝒟, 𝒯
• 𝑋: set of state variables
• 𝑄 ⊆ 𝑣𝑎𝑙(𝑋) set of states

• Θ ⊆ 𝑄 set of start states

• set of actions, A= E ∪ H

• 𝒟 ⊆ 𝑄×𝐴×𝑄
• 𝒯: set of trajectories for X which is

closed under prefix, suffix, and
concatenation

SemanOcs: ExecuOons and Traces
• An execution fragment of 𝒜 is an (possibly

infinite) alternating (A, X)-sequence 𝛼 =
𝜏W 𝑎X 𝜏X𝑎Y𝜏Y … where

• ∀ i, 𝜏\. 𝑙𝑠𝑡𝑎𝑡𝑒
𝑎\]X
⟶ 𝜏\]X. 𝑓𝑠𝑡𝑎𝑡𝑒

• If 𝜏W.fstate ∈ Θ then 𝛼 is an execution

• Execs𝓐 set of all executions

• The first state of an execution 𝛼 is 𝛼. 𝑓𝑠𝑡𝑎𝑡𝑒 =
𝜏W. 𝑓𝑠𝑡𝑎𝑡𝑒

• If the execution 𝛼 is finite and closed
𝜏W 𝑎X 𝜏X𝑎Y𝜏Y … 𝜏_ then 𝛼. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝜏_. 𝑙𝑠𝑡𝑎𝑡𝑒

• A state 𝒙 is reachable if there exists an execution
𝛼 with 𝛼. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝒙

Thermostat variations
automaton Thermostat(u, l, K, h : Real) where u > l
type Status enumeration [on, off]
actions
turnOn; turnOff;

variables
x: Real := l loc: Status := on

transitions
turnOn
pre x≤l ∧ loc=off
eff loc := on

trajectories
modeOn
evolve d(x) = K(h − x)
invariant loc = on ∧ x ≤ u

turnOff
pre x≥u ∧ loc=on
eff loc := off

modeOff
evolve d(x) = −Kx
invariant loc = off ∧ x ≥ l

Determinism vs nondeterminism
mode invariants

Urgency
automaton Thermostat(u, l, K, h,d : Real) where u > l
type Status enumeration [on, off]
actions
turnOn; turnOff;

variables
x: Real := l loc: Status := on

transitions
turnOn
pre x≤l ∧ loc=off
eff loc := on

trajectories
modeOn
evolve d(x) = K(h − x)
invariant loc = on ∧ x ≤ u + d

turnOff
pre x≥u ∧ loc=on
eff loc := off

modeOff
evolve d(x) = −Kx
invariant loc = off ∧ x ≥ l - dAn urgent transition (or action) is an action

that has to occur as soon as it is enabled

Our language does have special syntax for
creating urgent transitions, but we can use
mode invariants to accomplish this

Another Example: Periodically Sending Process
Automaton PeriodicSend(u)

variables: analog
clock: Reals := 0, z:Reals, failed:Boolean := F

actions: send(m:Reals), fail
transitions:

send(m)
pre clock = u /\ m = z /\ ~failed
eff clock := 0

fail
pre true
eff failed := T

trajectories:
evolve d(clock) = 1, d(z) = f(z)
invariant failed \/ clock<=u

Loc 1
𝑑 𝑐𝑙𝑜𝑐𝑘 = 1
𝑑 𝑧 = 𝑓(𝑧)

~failed⇒
𝒄𝒍𝒐𝒄𝒌 ≤ 𝒖

send(m)
clock = u /\ m = z /\ ~failed

clock := 0

clock:= 0

fail
true

failed := T

Special kinds of execuOons

• Infinite: Infinite sequence of transitions and trajectories
𝜏W 𝑎X 𝜏X𝑎Y𝜏Y …
• Closed: Finite with final trajectory with closed domain
𝜏W 𝑎X 𝜏X𝑎Y𝜏Y … 𝜏_ and 𝜏_. 𝑑𝑜𝑚 = [0, 𝑇]
• Admissible: Infinite duration
• May or may not be infinite
• 𝜏W 𝑎X 𝜏X𝑎Y𝜏Y …
• 𝜏W 𝑎X 𝜏X𝑎Y𝜏Y … 𝜏_ with 𝜏_. 𝑑𝑜𝑚 = [0,∞)

• Zeno: Infinite but not admissible
• Infinite number of transitions in finite time

Lecture Slides by Sayan Mitra mitras@illinois.edu

Zeno’s Paradox

Achilles runs 10 times faster than than the tortoise, but the turtle gets to start 1 second
earlier. Can Achilles ever catch Turtle?

Lesson: Mixing discrete transitions with continuous motion can be tricky!

Achilles, the fastest
athlete, greatest warrior

Zeno, Greek
philosopher

You couldn’t
even beat a

turtle

AEer 1/10th of a second, Achilles
reaches where the Turtle (T) started,
and T has a head start of 1/10th

second.
AEer another 1/100th of a second, A
catches up to where T was at t=1/10
sec, but T has a head start of 1/100th

…
T is always ahead …

whatever!

Defining stability of hybrid automata

• Given an admissible execution 𝛼 =
𝜏W 𝑎X 𝜏X𝑎Y𝜏Y …
• We would like to view an execution as
𝛼: 0,∞ → 𝑣𝑎𝑙(𝑋)
• But, how can we define 𝛼 𝑡 ?
• define 𝛼 𝑡k = 𝛼P. 𝑙𝑠𝑡𝑎𝑡𝑒 where 𝛼P is the

longest prefix of 𝛼 with 𝛼P. 𝑙𝑡𝑖𝑚𝑒 = 𝑡k

time

𝛼(𝑡) 𝜏W

𝜏m

𝜏X
𝜏Y

𝑡k

𝛼(𝑡k)

Run

Walk

Each of the modes of a walking robot are asymptotically stable

Is it possible to switch between them to make the system unstable?

Hybrid Instability

Run

Walk

Yes! By switching between
them the system becomes
unstable

Rimless wheel
✓

✓̇

spoke1spoke1 spoke2

spoke2 ✓̇

✓

↵↵

automaton RimlessWheel(𝛼, 𝜇: Real, 𝑛: Nat)
const 𝛽: Real := 2 𝜋/𝑛
type Spokes: enumeration [1,...,n]
actions

impact
variables

pivot: Spokes :=1
𝜃:Real := 0
𝜔: Real := 0

transitions
impact

pre 𝜃 ≥ 𝛽/2
eff pivot := pivot + 1 mod n
𝜃 ≔ 𝛽/2
𝜔 ≔ 𝜇𝜔

trajectories
swing
evolve
d 𝜃 = 𝜔
𝑑 𝜔 = sin(𝜃 + 𝛼)

invariant 𝜃 ≤ �
Y

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

Time (t)

θ
,
ω

speed ω

angle θ

Invariants and reachability

• A state 𝒙 of automaton 𝒜 is reachable if there exists an execution 𝛼 with
𝛼. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝒙

• 𝑅𝑒𝑎𝑐ℎ𝒜(Θ) is the set of all reachable state from Θ

• 𝑅𝑒𝑎𝑐ℎ𝒜(Θ, 𝑇) is the set of states reachable within time 𝑇

• 𝑅𝑒𝑎𝑐ℎ𝒜(Θ, 𝑘) is the set of states reachable within 𝑘 transitions

• 𝑅𝑒𝑎𝑐ℎ𝒜(Θ, 𝑇, 𝑘) is the set of states reachable up to time 𝑘 transitions and
time 𝑇

• An invariant 𝐼 ⊆ 𝑣𝑎𝑙(𝑋) is a set of states that contains 𝑅𝑒𝑎𝑐ℎ𝒜(Θ)

