
Introduction to the course:
Verifying cyberphysical systems

Verifying cyberphysical systems
August 27th 2019

Sayan Mitra
mitras@illinois.edu

mailto:mitras@illinois.edu

Welcome

INTRODUCTION
What is this class about?

Certificate

System
Model/Code &

Property

Bug traceAlgorithm
or

Method

The verification problem

4

Verification. The action of demonstrating or proving to be true
by means of evidence; formal assertion of truth. (OED)

An example

Certificate

System
Model/Code &

Property

Bug traceAlgorithm
or

Method

System. A subroutine
sort(int a[])
for returning a sorted
array of integers in some
programming language,
e.g. C

Requirement. Output of
sort(int a[])
is the sorted version of
the input array a[]

Verifying compiler.
Checks that sort meets
the requirement

counterexample. A
particular input array a
and initialization of sort
that produces wrong
output

A mathematical proof
that establishes that
sort(int a[])works
for all inputs in the given
model M of C

A model M for execution
of programs in C

An cyberphysical example

Certificate

System
Model/Code &

Property

Bug traceAlgorithm
or

Method

System. A
program/system for lane
keeping control for
vehicles

Requirement. The
vehicle does not go
outside the lane
boundaries

Verification tool

counterexample. A
particular environment
situation (lane geometry,
sensor failure, computer
configuration) that
makes the vehicle go
outside lanes

A mathematical proof
that establishes that for
all allowed inputs and
environments the vehicle
stays with the lane

Model/assumptions for
executing such programs
including the effects on
the physical vehicle

When can we build such a tool? How expensive is it? How well is it going to work? Under what assumptions?

Verifying cyberphysical system
• Cyberphysical system (CPS): a computer controlling something physical. For

example, car, drone, medical device, power grid, etc.
• The number of possible behaviors* usually uncountably infinite
• Requirement: Assertions about all behaviors
– Under all nominal conditions the vehicle stays within the lanes
– Under all nominal driving conditions the emissions are within the prescribed

range
– The drone visits the waypoints while avoiding collisions
– Insulin pump maintains blood glucose level to within the prescribed range

• Testing: evaluates requirements on a finite number of behaviors
• Verification: aims to prove requirements over all behaviors

* To be defined precisely

Goal

Write programs that prove correctness of other programs

Suppose Hamlet’s car has 2 choices every 10ms, how many
positions could it be in in 10 seconds? Predicting all futures

time = 0
states = 1

t = 10
S = 2

t = 20
S = 4

t = 30
S = 8

t = k
S = 2k/10

2120> the number
of atoms in the
visible universe

State space explosion! Number of states grow exponentially with time!

time = 0
states = 1

t = 10
S = 2

t = 20
S = 4

t = 30
S = 8

t = k
S = 2k/10

2120

t = 1.2

S=2k/10

2240

How many miles must an autonomous car test
drive before we call it safe?

200 million miles?

0.07 fatalities per billion passenger miles
(commercial flight)

Why is air-travel safe?

Dev.Assuranc
e Level (DAL)

Hazard
Classification

Objectives

A Catastrophic 71

B Hazardous 69

C Major 62

D Minor 26

E No Effect 0

Regulations and Audits

DO178C

Primary document by which FAA & EASA
approves software-based aerospace
systems.

DAL establishes the process necessary to
demonstrate compliance

Supplement DO-333 supplement of DO-
178C identifies aspects of airworthiness
certification that pertains to of software
using formal methods

Statement Coverage: Every
statement of the source
code must be covered by a
test case

Condition Coverage: Every
condition within a branch
statement must be covered
by a test case

13

What fraction of the cost of developing
a new aircraft is in SW?

How much does it cost to change 1 line
of code?

Another earlier success instance: microprocessor
industry and supporting design automation tools

Electronic design automation industry

Lecture Slides by Sayan Mitra mitras@illinois.edu

Beyond ECE/CS 584

• Hardware verification (model checking) is now part of engineering practice in the industry
• Automated Device Driver Verification at Microsoft: SLAM tool from MSR; AMAZON Web

services verified using TLA
• Formal modeling and analysis is becoming part of certification process for avionics (e.g.,

ASTREE); adoption for automotive and manufacturing around the corner
• Commercial enterprises

– Synopsis, Mentor Graphics, Cadence, Coverity, Galois, SRI, etc.
– More up and coming in the automotive space

• Vibrant, focused research community:
– Conferences: CAV, TACAS, PLDI, HSCC, EMSoft
– Faculty and research. positions
– Turing Awards: Lamport (2014), Clarke, Sifakis & Emerson (2008), Pnueli (1997), Lampson

(1992), Milner (1991), Hoare (1980), Dijkstra (1972) …

Verification aims to mathematically prove
requirements over all behaviors

• To prove anything, first we have to start with assumptions
• These assumptions will be captures in the models of cyberphysical systems

“All models are wrong, some are useful”

• 1/3 of this class is about models
– Programs, state machines, or differential equations, block diagrams?
– Discrete or continuous time
– Discrete or continuous state or both
– Hybrid, switched
– Deterministic or nondeterministic or both or neither
– Composition and interfaces
– Abstraction
– Modeling languages, tools

Verifying hybrid models is a very hard problem
• Verification of hybrid automaton is undecidable
– No one can find the is Algorithm of that type

• Approximate and bounded time versions of the problem
can be solved algorithmically, but often the algorithms do
not scale with the size of the model, number of agents,
time horizon, etc.

• Models are often hard to get
– IP protection
– Too complex, messy
– Machine learning modules

Certificat
e

System
Model/Code
& Property

Bug trace
Algorithm
or Method

Odd perspectives on scalability

data scientist

Solution
does not
scale

algorithmist

This is
perfect!

verification engineer

Yay,
decidable!

O(n) O(n) O(2n)

Silver linings (course objectives)

• Learn the foundational connections
between computer science and control
theory

• Model everything
• Introduction to key concepts in formal

methods and cyberphysical systems;
exposure to some of the most
influential ideas in CS and

• Learn powerful algorithms and tools
• Jumpstart research

Programs, state machines, or
differential equations, discrete or
continuous state or both, Hybrid,
switched, Deterministic or
nondeterministic or both,
composition, interfaces, abstraction,
modeling languages, tools

Invariant, barrier certificates,
ranking functions, stability, self-
stabilization, convergence,
transition system

satisfiability modulo theory,
semantics, temporal logics, theorem
provers, SAF solvers, ranking
functions, data-driven verification,
HYLAA, C2E2, SpaceEx, Flow*, Z3, …

semester-long project, feedback,
presentation, hardware, software,
and data resources

ADMINISTRIVIA
How the course works

Illinois 2019 Edition

• https://wiki.illinois.edu/wiki/pages/viewpage.action?pageId=6
42598908

https://wiki.illinois.edu/wiki/pages/viewpage.action?pageId=642598908

