Data-driven verification

C2E2 and DryVR

Electrical & Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana Champaign

ECE 584

Is there a behavior of system S violating safety requirement R within time bound T?

Yes -> bug-trace -> design improvement

No -> safety proof -> certification

Is there a behavior of system S violating safety requirement R within time bound T?

Yes -> bug-trace -> design improvement

No -> safety proof -> certification

Recall: timed automata

Recall: bouncing ball

dynamic: general nonlinear function

Recall: bouncing ball

Summary of C2E2

- Input: hyxml file
- Properties: initial set + unsafe set
- Simulate and/or verification
- Plotter

Outline

Introduction and C2E2 demo

Model-based sensitivity

- Simulation-driven verification algorithm
- Discrepancy function
- Matrix measure and sensitivity
- More examples

Next lecture on Thursday:

• New modeling questions with DryVR

System models and notations

nonlinear dynamical model

Safety verification problem $\xi(\Theta, [0, T]) \cap U = \emptyset$?

Simulations to safety proofs

Given start

U

• Compute finite cover $\cup_i B(x_i, \delta) \supseteq \Theta$

Θ

- Simulate from the center x_0 of each cover to get $\xi(x_0, \{t_1, \dots, t_k\})$
- Bloat simulation so that

 $\xi(x_0, .) \bigoplus \beta \supseteq \xi(B(x_0, \delta), [0, T])$

- \circ Check intersection/containment with U
- \circ $\,$ Refine cover if needed and repeat ... $\,$

How to bloat or generalize simulations?

Brief history

2000	On Systematic Simulation of Open Continuous Systems	Kapinski et al.
2006	Verification using simulation	Girard and Pappas
2007	Robust Test Generation and Coverage for Hybrid Systems	Julius, Fainekos, et al.
2010	Breach, a toolbox for verification and parameter synthesis of hybrid systems.	Donzé
2013 Verification of annotated models from executions.		Duggirala <i>, Mitra,</i> Viswanathan

Main problem: How to quantify generalization?

- Discrepancy formalizes generalization :
- Discrepancy is a continuous function β that bounds the distance between neighboring trajectories $\|\xi(x_1,t) - \xi(x_2,t)\| \le \beta(\|x_1 - x_2\|,t),$
- From a single simulation of $\xi(x_1, t)$ and discrepancy β we can over-approximate the reachtube

A simple example of discrepancy function

• If f(x) has a Lipschitz constant L :

$$\forall x, y \in \mathbb{R}^n, \|f(x) - f(y)\| \le L \|x - y\|$$

Example: $\dot{x} = -2x$, Lipschitz constant L = 2

• then a (bad) discrepancy function is $\|\xi(x_1,t) - \xi(x_2,t)\| \le \|x_1 - x_2\|e^{Lt} = \beta(\|x_1 - x_2\|, t)$

A simple example of discrepancy function

 $\dot{x} = -2x$, Lipschitz constant $L = 2, \delta = 1$

What is a good discrepancy ?

General: Applies to general nonlinear fAccurate: Small error in β Effective: Computing β is fast (in practice)

Matrix measure for $A \in \mathbb{R}^{n \times n}$

Matrix norm

$$\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$
$$|A\|_2 = \sqrt{\lambda_{max}(A^T A)}$$

Matrix measure [Dahlquist 59]:

$$\mu(A) = \lim_{t \to 0^+} \frac{\|I + tA\| - \|I\|}{t}$$

2-norm:
$$\mu(A) = \lambda_{max} \left(\frac{A+A^{T}}{2} \right)$$

Computing μ

Vector norm	Induced matrix norm	Matrix measure
$ x _1 = \Sigma x_j $	$\left A \right _1 = \max_j \Sigma_i \left a_{ij}\right $	$\mu_1(A) = \max_j (a_{jj} + \Sigma_{i \neq j} a_{ij})$
$ x _2 = \sqrt{\Sigma x_j^2}$	$\left A \right _2 = \sqrt{\max_j \lambda_j (A^T A)}$	$\mu_2(A) = \max_j \frac{1}{2} (\lambda_j (A + A^T))$
$ x _{\infty} = \max_{j} x_{j} $	$\left A \right _{\infty} = \max_{i} \Sigma_{j} a_{ij} $	$\mu_{\infty}(A) = \max_{i} (a_{ii} + \Sigma_{i \neq j} a_{ij})$

Table from: Reachability Analysis of Nonlinear Systems Using Matrix Measures [Maidens and Arcak, 2015]

Matrix measures can be used to compute discrepancy

Theorem [Sontag 10]: For any $\mathcal{D} \subseteq \mathbb{R}^n$, if the matrix measure of the Jacobian $\mu(J(t, x)) \leq c$ over \mathcal{D} , and all trajectories starting from the line remains in \mathcal{D} then the solutions satisfies:

$$|\xi(x_1,t) - \xi(x_2,t)| \le |x_1 - x_2|e^{ct}$$

- That is, $|x_1 x_2|e^{ct}$ is a discrepancy function
- Here J is the Jacobian of f(x)
- This c can be negative and is usually much smaller than the Lipschitz constant

Strategies for computing μ

- Define $y(t) = \xi(x_1, t) \xi(x_2, t)$
- Let interval matrix **A** be such that for all $x \in D$, $J_f(x) \in A$,
- Then $\dot{y}(t) = A(t)y(t)$, for some $A(t) \in A$
- This gives discrepancy $\beta \left(\left| |x_1 x_2| \right|_M, t \right) = \left| |x_1 x_2| \right|_M e^{\frac{\gamma}{2}t}$, where $\gamma^* = \min \gamma$ s.t. $A^T M + MA \leq \gamma M, \forall A \in A \dots$ (*)
- Solving (*)
 - Fix M = I, $\gamma^* = \lambda_{max}(A + A^T) + error$

Simulation $\oplus \beta \rightarrow$ Reachtubes

simulation(x_0 , h, ϵ , T) of gives sequence S_0 , ..., S_k : dia(S_i) $\leq \epsilon$ & at any time $t \in [ih, (i + 1)h]$, solution $\xi(x_0, t) \in S_i$.

$$\langle S_0, \dots, S_k, \epsilon_1 \rangle \leftarrow valSim(x_0, T, f)$$
For each $i \in [k], \ \epsilon_2 \leftarrow \sup_{t \in T_i, x, x' \in B_{\delta}(x_0)} \beta(x_1, x_2, t)$

$$R_i \leftarrow B_{\epsilon_2}(S_i)$$

Example 1: $\dot{v} = \frac{1}{2}(v^2 + w^2); \dot{w} = -v$

- $J_f(v,w) = \begin{bmatrix} v & w \\ -1 & 0 \end{bmatrix}$
- $\gamma^* = 1.0178$ upper-bound on eigen values of the symmetric part of $J_f(v, w)$ over $D = [-2, -1] \times [2,3]$
- $||\xi(x_1,t) \xi(x_2,t)|| \le ||x_1 x_2||e^{1.0178t}$ while $x \in D$
- Uniform in all directions

Example 2:
$$\dot{x} = \begin{bmatrix} 0 & 3 \\ -1 & 0 \end{bmatrix} x$$
; Eigenvalues $\pm \sqrt{3} i$

Hybrid models

Hybrid Reachtubes

Track & propagate *may* and *must* fragments of reachtube

$$tagRegion(R, P) = \begin{cases} must & R \subseteq P \\ may & R \cap P \neq \emptyset \\ not & R \cap P = \emptyset \end{cases}$$

$invariantPrefix(\psi, S) =$

 $\langle R_0, tag_0, ..., R_m, tag_m \rangle$, such that either $tag_i = must$ if all the $R'_j s$ before it are must $tag_i = may$ if all the $R'_j s$ before it are at least may and at least one of them is not must

Guarantees for bounded invariance verification using discreapancy

Theorem. (Soundness). If Algorithm returns safe or unsafe, then A is safe or unsafe.

Definition Given HA $A = \langle V, Loc, A, D, T \rangle$, an ϵ -perturbation of A is a new HA A' that is identical except, $\Theta' = B_{\epsilon}(\Theta)$, $\forall \ell \in Loc, Inv' = B_{\epsilon}(Inv)$ (b) a $\in A, Guard_a = B_{\epsilon}(Guard_a)$.

A is **robustly safe** iff $\exists \epsilon > 0$, such that A' is safe for U_{ϵ} upto time bound T, and transition bound N. Robustly unsafe iff $\exists \epsilon < 0$ such that A' is safe for U_{ϵ} .

Theorem. (Relative Completeness) Algorithm always terminates whenever the A is either robustly safe or robustly unsafe.

Compare execute check engine

static-dynamic analysis of nonlinear hybrid models

Powertrain control verification benchmark

Simulink model from [Jin et al. HSCC 2014] Highly nonlinear polynomial differential equations; discrete mode switches

C2E2 **first to verify properties**, e.g., that the **air-fuel ratio** remains within a given range for a set of driver

[CAV 15] Duggirala, Fan, Mitra, Viswanathan: Meeting a Powertrain Verification Challenge.

Benchmark Simulink models

Polynomial hybrid automaton

Variable	Description			
$ heta_{in}$	Throttle angle			
p	Intake manifold pressure			
λ	Air/Fuel ratio			
p_e	Intake manifold pressure estimate			
i	Integrator state, control variable			

 $\dot{\theta} = 10(\theta_{\rm in} - \theta)$

 $\dot{p} = c_1 (2\theta (c_{20}p^2 + c_{21}p + c_{22}) - c_{12}(c_2 + c_3\omega p + c_4\omega p^2 + c_5\omega p^2))$

 $\dot{\lambda} = c_{26}(c_{15} + c_{16}c_{25}F_c + c_{17}c_{25}^2F_c^2 + c_{18}\dot{m_c} + c_{19}\dot{m_c}c_{25}F_c - \lambda)$

 $\dot{p_{e}} = c_{1} \left(2c_{23}\theta(c_{20}p^{2} + c_{21}p + c_{22}) - (c_{2} + c_{3}\omega p + c_{4}\omega p^{2} + c_{5}\omega p^{2}) \right)$

 $i = c_{14}(c_{24}\lambda - c_{11})$

Refinements in action: air-fuel ratio range

Requirement: Air-Fuel ratio λ contained in interval $[0.9\lambda_{ref}, 1.02\lambda_{ref}]$ for different initial conditions &throttle inputs

An auto-pass controller

Given a controller and a safe separation requirement, we would like to check that the system is safe with respect to

- a) range of initial relative positions
- b) range of possible speeds
- c) range road friction conditions
- d) possible behaviors of "other" car
- e) range of design parameters

C2E2: Tool for nonlinear hybrid system verification

	•	C2E2: TotalMotion40s	-		
File	Help				
Model	*				
					Parameters
TotalM	Dion40s $E_0(ax, dot = 0.5^{+}ax = 0.5^{+}xx + 1.4)$				Time-step: 0.1
	Eq(ample dot =0.15*omple = 0.01*sv + 3.2)	-			Time horizon: 140.0
	Eq(vv dot -0.45*omega - 0.025*sv - 0.05*vv + 8.0				C2E2: TotalMotion40s
	Eq(sy_dot, 0.1*vv)	File Help			
-	Invariants	Property nam Model 2 SxSyBack 2			
	sy<12	Safety	• •	•	C2E2 p1
ÞE	ndTurn1 (2)				5
ÞE	ndTurn2 (3)	Initial set:			ed
~ 5	startTurn2 (4)	SlowDown: si =3.3&&ax==0		50	be
-	Flows				
	Eq(vx_dot, 0.1*ax)			40	
	Eq(sx_dot, vx - 2.5)			40	
	Eq(ax_dot, -0.5*ax - 0.5*vx + 1.4)	p1			
	Eq(omega_dot, -0.15*omega - 0.01*sy - 2.8)		>	30	
	Eq(vy_dot, -0.45*omega - 0.025*sy - 0.05*vy - 7.0	Unsafe set:	Ś.		
	Eq(sy_dot, 0.1*vy)	ev-d&keve	š	20	
-	Invariants	30-40030			
	sy>3.5			10	
Þ 5	peedUp (5)				
Þ	Continue (6)			0	
	sitions			Ŭ	
Þ	ilowDown -> StartTurn1			-10	
4 5	startTurn1 -> EndTurn1			-10 [sx:blue sy:green
	Source: StartTurn1 (1)			0	0 20 40 60 80 100 120 140
	Destination: EndTurn1 (2)				time
	Guards: sys=12		_		ume
	Actions				
	peed to -> StartTum?				
~ ;	Source: Speed In (5)				
	Destination: StartTurn2 (4)				Add Edit Copy Remove
	Productions of all the try				Piot

An auto-pass controller

Debugging systems with highfidelity models

34

Initial Set

35

Unsafe Set

C2E2 Architecture

More features

- Log file to debug
- Plotted pictures are saved in the work-dir folder
- Command line version

What we don't know

- Sample efficiency of the algorithms
 - Towards that [Girard Pappas 2006]

- [Fan et al. EmSoft 2016] [Liberzon Mitra 2016]

- Unbounded initial set and time horizon
- How to verify open models?

 $-\dot{x}(t) = f(x(t), u(t)), \ x_0 \in \Theta \ u \in \mathcal{U}$

- Ongoing work with $\mathcal{U} = \{u_1, \dots, u_k\}$

• More general models with uncertainty

Hybrid models

Models closer to reality

"All models are wrong, some are useful"

Gain serenity to accept models as they are

https://github.com/qibolun/DryVR

A new view of knowledge in hybrid models

Complete information of switching structure

Transitions are timetriggered, possibly nondeterministic: oneclock timed automaton Executable access to mode dynamics

╋

DryVR's Executable hybrid model

A new view of knowledge in hybrid models

Statistical reasoning sensitivity analysis

+

DryVR's formal probabilistic guarantees

DryVR model for Automatic Emergency Breaking

DryVR model for auto-pass

Learning discrepancy from black-box

Assume a form of the discrepancy

Global exponential discrepancy

$$\beta(x_1, x_2, t) = |x_1 - x_2| K e^{\gamma t}$$

Others piece-wise exponential, polynomial

For any pair of trajectories τ_1 and τ_2 in mode $\forall t \in [0, T], |\tau_1(t) - \tau_2(t)|$ $\leq |\tau_1(0) - \tau_2(0)| K e^{\gamma t}$ $\forall t, \ln \frac{|\tau_1(t) - \tau_2(t)|}{|\tau_1(0) - \tau_2(0)|} \leq \gamma t + \ln K$

Familiar problem of learning linear separators

Learning linear separators

For a subset $\Gamma \subseteq \mathbb{R} \times \mathbb{R}$, a linear separator is a pair $(a, b) \in \mathbb{R}^2$ such that $\forall (x, y) \in \Gamma, x \leq ay + b$

Algorithm:

1. Draw k pairs $(x_1, y_1), \dots, (x_k, y_k)$ from Γ according to \mathcal{D} .

2. Find $(a, b) \in \mathbb{R}^2$ s.t. $x_i \leq ay_i + b$ for all $i \in \{1, \dots, k\}$.

Proposition [Valiant 84]: Let $\epsilon, \delta \in \mathbb{R}^+$. If $k \ge \frac{1}{\epsilon} \ln \frac{1}{\delta}$ then with probability $1 - \delta$, the above algorithm finds (a, b)such that $err_{\mathcal{D}}(a, b) = \mathcal{D}(\{(x, y) \in \Gamma \mid x > ay + b\}) < \epsilon$.

Experience: 96% accuracy for 10 trajectories, >99.9% for 20

DryVR

Executable access to mode dynamics

╋

DryVR's Executable hybrid model

Model file specifies vertices, edges, labels

Simulate function takes as input mode, initial state, and time horizon

Reachability analysis

Automated Risk / ASIL Analysis

Risk = Probability x Severity

Conclusions

Simulation data + sensitivity from models => algorithms => sound & complete invariance verification

Try C2E2 and DryVR give feedback, built on! Examples available: Satellites to transistors

Several open questions about handling models with uncertainty and precise characterization of efficiency

This work is supported by grants form the United States National Science Foundation (NSF)