Composition

Sayan Mitra
Verifying cyberphysical systems
mitras@illinois.edu

mailto:mitras@illinois.edu

* HW3 out
* Read chapter 5

What is composition?

Complex models and systems are built by
putting together components or modules

Composition is the mathematical operation
of putting together

Leads to precise definition of module
interfaces

model of a network of oscillators [Huang et. al 14]

What properties are preserved under
composition?

Powertrain model from Toyota [Jin et al. 15]

* Give an example of how you’ve built
something more complex from simple
components

 Throughout the lecture, think if your notion of
composition is captured by what we define

Outline

Composition operation

— Input/output interfaces

/O automata

hybrid 1/0 automata
Examples

Properties of composition

Composition of automata

 Complex systems are built by “putting
together” simpler subsystems

* Recall A = (X,0,A4, D)
* A= Ai||A;
— A4, A, are the component automata and

— Ais the composed automaton

— | | symbol for the composition operator

Composition: asynchronous modules

A||B

© /Q 00
D) 1O

()

N
5
/%//

) o oo R Y00
TR TN
; \Q OONO0

€0

composition: modules synchronize

0467_ B d'

0 /CD 0.0,
;)

)

Composition of (discrete) automata

More generally, some transitions of <A and B may synchronize,
while others may not synchronize

Further, some transitions may be controlled by.A which when
occurs forces the corresponding transition of B

Thus, we will partition the set of actions A of A = (X, 0, A4, D) into
— H:internal (do not synchronize)
— 0: output (synchronized and controlled by A)
— I:input (synchronized and controlled by some other automaton)
A=HUOUI

This gives rise to I/O automata [Lynch, Tuttle 1996]

Reactivity: Input enabling

* Consider a shared action brakeOn controlled by A4 and listend-to or
read by A,

* Input enabling ensures that when A and A, are composed then A,
can react to brakeOn

Definition. An input/output automaton is a tuple A =
(X,0,A,D) where

e X is aset of names of variables
* 0O C val(X) is the set of initial states
e A=]UO0OUH isa set of names of actions

e D S val(X)xAxval(X) is the set of transitions and A
satisfies the input enabling condition:

El. For each x € val(X), a € I there exists x' € val(X) such
thatx -, x'

Controller brakeOn
c’ql Pre ProxSensorCrit
Eff (do nothing)
\§ : J
|
|
1 brakeOn
|
(" Vehicle Y brakeon
Pre ?7??
Eff accel :=-5
A,
Move
\) Pre ...

Eff ...

Compatibility IOA
h

A pair of I/O automata A4 and A, are
compatible if

HinAj=®
Oin0j=®

no unhintended interactions

no duplication of authority

Extended to collection of automata in the
natural way

A, K
(b
A,
_)
|
/
/
a0/
/
7 /
>K _____ >
\
\
_ J A\
\
\
S
r N
Ay
_ Y

Composition of I/O automaton

Definition. For compatible automata A, and A, their
composition A, || A, is the structure A= (X,0,4,D)

_ X=X, UX,

- 0={x€eval(X)|Vi €{1,2}: x[X; € 0}
— H=H, UH,

_0=0,u0, } A=HUOUI
_I=1, UL\O

— (x,a,x’) € Difffori € {1,2}
* a€ A;and (x[X;,a,x'[X) € D;
°a e Ai X[Xl' = X[Xl'

Theorem. The class of I0-automata is closed under composition. If A,
and A, are compatible I/O automata thenA = A, | |A,is alsoan /O
automaton.

Proof. Only 2 things to check

- Input, output, and internal actions are disjoint---by construction

- A satisfies E1. Consider any state x € val(X; U X,) and any input
actiona € I; U, \ O such that ais enabled in x.

- Suppose, w.lo.g.a € I

- We know by E1 of A, that there exists x; € val(X;) such that
xX[X1 =4 X3

- a & 0,,1,, H, (by compatibility)

- Therefore, x -, (x7,x[X,) is a valid transition of A (by definition
of composition)

Example: Sending process and channel

/ System \
4)
4 Sender) 4 Channel‘\ Receiver
fail send(m) receive(m)
————— - - —-——— -F--=->
\ J
\\ J \§)j
send(m)
~failed

Automaton Sender(u)

variables internal
failed:Boolean := F
output send(m:M)

input fail
Loc 1 transitions:
. output send(m)
failed pre ~failed
eff
input fail
pre true
eff failed =T
true

failed :=T

FIFO channel & Simple Failure Detector

Automaton Sender(u)
variables internal
failed:Boolean := F
output send(m:M)

input fal Automaton System(M)
transitions: variables queue: Queue[M] := {}, failed: Bool
output send(m) . .)
pre ~failed. actions mpﬂl
[L output send(m:M), receive(m:M)
m':l:: iarﬂe transitions:
eff failed := T output send(m)
Automaton Channel(M) pre ~Tailed
variables internal queue: Queue[M] := {} ff queue := append(m, queue)
actions input send(m:M) output receive(m)
output receive(m:M) pre head(queue)=m
transitions: eff queue := queue.tail
input send(m) input fail
pre frue pre true

eff queue := append(m, queue) _
: eff failed := true
output receive(m)—
pre head(queue)=m.

eff queue := queue.tail

COMPOSING HYBRID SYSTEMS

Hybrid IO Automaton

In addition to interaction through shared actions
hybrid input/output automata (HIOA) will allow
interaction through shared variables

Recall a hybrid automaton A = (V,0,4, D, T)
Plant
We will partition the set of variables IV of A into
— X:internal or state variables (do not 1 %= fl_(xl’ 2)
interact) 174
— Y: output variables
— U: input variables V2
. V=XUYUU Controller
X2 = g(xz»_'@ﬂ
This gives rise to hybrid /O automata (HIOA) [Lynch, Y2 = X2

Segala, Vaandrager 2002]

V1

Consider a shared variable throttle controlled by <A, and listened-to or read by A,

Input trajectory enabling ensures that when A and A, are composed then A,

Reactivity: Input trajectory enabling

can react to any signal generated by A4

If the trajectories of A, are defined by ordinary differential equations, then input
enabling is guaranteed if A, only generates piece-wise continuous signals (throttle)

Definition. An hybrid input/output automaton is a tuple A = (V, 0,4, D, T) where

V=XUUUY isasetof variables

0O € val(X) is the set of initial states
A=1U0UH isa set of actions

D € val(X)xAxval(X) is the set of transitions

T is a set of trajectories for V closed under prefix, suffix, and concatenation

E1l. For each x € val(X),a € I there exists X' € val(X) such that x -, x’

E2. For each x € val(X), A should be able to react to any trajectory n of U.

i.e, 37 € T with 7. fstate = x such that t | U is a prefix of n and either (a) 7 |

U =nor (b) tisclosed and some a € H U O is enabled at 7. [state.

Controller
A4

. J

throttle

y

(" Vehicle)

A

. J

Compatibility of hybrid automata

* For the interaction of hybrid

automata A, and A, to be
well-defined we need to ensure

that they have the right
interfaces

e compatibility conditions

/~ Controller Y\

|
accel (Vehicle)

Output accel

Ay

Output brakeOn

. J

e = =

brakeOn

position

» Input accel

A

Input bra%ceOn

_

J

I

Compatibility HIOA

A pair of hybrid I/O automata A, and A, are compatible if

23

no unintended continuous interactions

=<
<< —
I
S o

no duplication of continuous authority

Extended to collection of automata in the natural way and
captures most common notions of composition in, for
example, Matlab/Simulink = T

Composition

For compatible A, and A, their composition A, || A, is the
structure A= (VV,0,4,D,T)

VariablesV =X UY U U

- X=X,UX,Y=Y,UY,,U=U, uU,\Y
O@={x€eval(X)|Vi € {1,2}: x[X; € 0}
ActionsA=HUOUI

—~ H=H,UH,,0=0,U0,,l=1, UlL\O,
(x,a,x') € Difffori € {1,2}

— a € A; and (x[X;,a,x'[X;) € D;

— a ¢ A; x[X; = x|X;

T : set of trajectories for V

— e Tiff vi € {1,2}, Tl V; €T,

Closure under composition

e Conjecture. The class of HIOA is closed under

composition. If A, and A, are compatible HIOA then

A, ||A,is also a HIOA.

 Can we ensure that input trajectory enabled

condition is satisfied in the composed automaton?

* No, in general

— Additional conditions are needed

Plant
Input u,
X1 = U
output y, = x

Controller
Input y,,
X =Ypt+1
Output u, = x,

Yp

Example 2: Periodically Sending Process

Automaton PeriodicSend(u)

send(m) variables internal
clock =u /\ m =z /\ ~failed clock: Reals := 0, z:Reals, failed:Boolean :=F
clock :=0 signature output send(m:Reals)
input fail
transitions:

output send(m)
pre clock =u /\ m =z /\ ~failed

Loc 1

dagé())ic)f?z)l eff clock := 0
clock:=0 ~failed= input fail
clock = u pre true
eff failed :=T
trajectories:
true evolve d(clock) = 1, d(z) = f(z)

failed :=T invariant failed \/ clock<u

Time bounded channel & Simple
Failure Detector

Automaton Timeout(u,M)
variables: suspected: Boolean :=F,
clock: Reals :=0
signature input receive(m:M)
output timeout
transitions:
input receive(m)
pre true
eff clock := 0; suspected := false;
output timeout
pre ~suspected /\ clock = u
eff suspected := true
trajectories:
evolve d(clock) =1
invariant clock < u '\ / suspected

Automaton Channel(b,M)
variables internal queue: Queue[M,Reals] :=-
clock: Reals :=0
signature input send(m:M)
output receive(m:M)
transitions:
input send(m)
pre true
eff queue := append(<m, clock+b>, queue]
output receive(m)
pre head(queue)[1]=m A
head(queue)[2]=clock
eff queue := queue.tail
trajectories:
evolve d(clock) =1
invariant V<m,d>€ queue: d = clock

Example 3: Oscillator and pulse generator

pre now > T.q

=0

eff now

On
d(now) =
u = 1
inv now < T,,

1

Off
d(now) = 1
u = 0

inv now < T,p

pulseGen

0 =: Mou JJ9

201

15+

+ 10+

5-/

01 ,

0 10 20
time

Mode
d(x)) = —x,(..\‘f +09x1 +0.9)—x, +u

d(xy) = x; —2xy

wr z mou 3axd

Oscillator

Composed automaton

20 0.5

On,Mode 15 0.4

d(now) =1 0.3
10

pre:now = Torr

d(xy) = —x;(x? +09x; + 0.9) —x, + 1 0.2
d(Xz) = X1 — Z.X'Z 51 0.1
0 10 20 0 10 20
\ time time
e
o o Oscillator
Il AN 1
> 212 '
S g S Oscillator Oscillator
i Oy 6 2
& ol|o
M pulseGen
Off, Mode
d(now) =1 Oscillator Oscillator
d(x;) = —x;(x? + 09x; + 0.9) —x, + 0 5 3
d(x;) = x1 — 2x; -
now < Tofr Oscillator
4

Cardiac oscillator network models, Grosu et al. CAV, HSCC 2007-2015

Restriction operation on exections

Sometimes it is useful to restrict our attention to only some subset of
variables and actions in an execution

Recall the restriction operations x[V and 71V

Let @ = T9a;71a, be an execution fragment of a hybrid automaton with
set of variables V and set of actions A. Let A’ be a set of actions and V' be
a set of variables.

Restriction of a to (4, V"), written as a[(A', V") is the sequence defined
inductively as:
— a4, V) =tlV'ifa=1
— aat|[A,V")=
e af(A,V)a@lV)ifaed
e a[(A",V')concat (tlV")ifagA

From the definition it follows a. Istate [V’ = a[(A",V"). Istate for
any A", V'

Properties of Compositions

Proposition. Let A = A4||A,. ais an execution fragment of A iff
a[(A4;,V,),i € {1,2} are both execution fragments of A,;.

Proof of the forward direction. Fix @ and i. We prove this by induction on the
length of «.

* Basecase:a =T.a[(4;,V;) =t !V, by definition of composition 7 | V; € T;. So,
tlV; € Frag;

« a=a at[(4;V;)anda € A; and by induction hypothesis a'[(4;,V;) € Frag;.
Let a'[(4;, V;).]state = v. By the definition of composition: 7 L V; € T;.

— It remains to show that v[V; -, (t 1 V}). fstate. Since a € A;, by the definition of
composition: a’[(4;,V;).Istate —, T | V,. fstate

« a=a at[(4;V;)anda & A; and by induction hypothesis a'[(4;,V;) €
Exec;. Let T’ be the last trajectory in that execution.

— Since a & A;, by the definition of composition:t’. [state = T | V;. fstate . By concatenation
closure of T;, it follows that 'concat t | V; € T;. Therefore a[(4;,V;) € Exec;.

properties of executions of
composed automata

a is an execution iff a[(4;,V;),i € {1,2} are both executions.

a is time bounded iff a[(A;,V;),i € {1,2} are both time bounded.
a is admissible iff a[(A;,V;),i € {1,2} are both admissible.

a is closed iff a[(A4;,V;),i € {1,2} are both closed.

a is non-Zeno iff a[(A;,V;),i € {1,2} are both time non-Zeno.

Summary

* Composition operation
— |/O interfaces: actions and variables
— Reactivity/input enabling

— (non) Closure under composition

* Properties of executions preserved under
composition

 Inductive invariants

Example Inductive Invariance Proof

S: V <m,d> € x.queue: x.clock < d < x.clock+b
Is an invariant for the timed channel.

Proof. Use the theorem.

* Check start condition. Holds vacuously as x.queue = {} [Def of initial
states]

* Check trajectory condition. Consider any 7, let x = 7.fstate and x’ =
T.Istate and 7.ltime =t. Assume x satisfies (1) and show that x’ also.
— X.queue = X.queue [trajectory Def], Fix <m,d> in x.queue
— x.clock < d [By Assumption]
— Suppose x.clock > d
— X.clock - x.clock > d - x.clock
— t>d - x.clock, then there exists t’ € .dom and t’ < t where 7(t").clock =d
— By invariant z.Itime = t’ which is a contradiction
— Also, since d < x.clock+b, d< x’.clock+t+b
* Check transitions:
— X “receive(m) X - Follows from assumption x € S.

