
Composition

Sayan Mitra
Verifying cyberphysical systems

mitras@illinois.edu

mailto:mitras@illinois.edu

• HW3 out
• Read chapter 5

What is composition?

• Complex models and systems are built by
putting together components or modules

• Composition is the mathematical operation
of putting together

• Leads to precise definition of module
interfaces

• What properties are preserved under
composition?

model of a network of oscillators [Huang et. al 14]

Powertrain model from Toyota [Jin et al. 15]

• Give an example of how you’ve built
something more complex from simple
components

• Throughout the lecture, think if your notion of
composition is captured by what we define

Outline

• Composition operation
– Input/output interfaces

• I/O automata
• hybrid I/O automata
• Examples
• Properties of composition

Composition of automata

• Complex systems are built by “putting
together” simpler subsystems

• Recall 𝒜 = ⟨𝑋, Θ, 𝐴, 𝑫⟩
• 𝒜 = 𝒜*||𝒜,
–𝒜*,𝒜, are the component automata and
–𝒜is the composed automaton
– || symbol for the composition operator

Composition: asynchronous modules

a

b

c

𝒜

d

e

f

ℬ
𝒜||ℬ

a d

a e

a f

b d

b e

b f

c d

c e

c f

composition: modules synchronize

a d

a e

a f

b d

b e

b f

c d

c e

c f

a

b

c

𝒜

d

e

f

ℬ

Composition of (discrete) automata

• More generally, some transitions of 𝒜 and ℬ may synchronize,
while others may not synchronize

• Further, some transitions may be controlled by𝒜 which when
occurs forces the corresponding transition of ℬ

• Thus, we will partition the set of actions 𝐴 of 𝒜 = ⟨𝑋, Θ, 𝐴, 𝑫⟩ into
– 𝐻: internal (do not synchronize)
– 𝑂: output (synchronized and controlled by 𝒜)
– 𝐼: input (synchronized and controlled by some other automaton)

• 𝐴 = 𝐻 ∪ 𝑂 ∪ 𝐼
• This gives rise to I/O automata [Lynch, Tuttle 1996]

Reactivity: Input enabling
• Consider a shared action brakeOn controlled by 𝒜1 and listend-to or

read by 𝒜2

• Input enabling ensures that when 𝒜1 and 𝒜2 are composed then 𝒜2
can react to brakeOn

Definition. An input/output automaton is a tuple 𝒜 =
〈𝑋, Θ, 𝐴, 𝒟〉 where
• 𝑋 is a set of names of variables
• Θ ⊆ 𝑣𝑎𝑙(𝑋) is the set of initial states
• 𝐴 = 𝐼 ∪ 𝑂 ∪ 𝐻 is a set of names of actions
• 𝒟 ⊆ 𝑣𝑎𝑙 𝑋 ×𝐴×𝑣𝑎𝑙 𝑋 is the set of transitions and 𝒜

satisfies the input enabling condition:
E1. For each 𝒙 ∈ 𝑣𝑎𝑙 𝑋 , 𝑎 ∈ 𝐼 there exists 𝒙@ ∈ 𝑣𝑎𝑙 𝑋 such
that 𝒙 →B 𝒙′

Controller
𝒜*

Vehicle

𝒜,

𝑏𝑟𝑎𝑘𝑒𝑂𝑛
Pre ProxSensorCrit
Eff (do nothing)

𝑏𝑟𝑎𝑘𝑒𝑂𝑛
Pre ???
Eff accel := -5

Move
Pre …
Eff …

𝑏𝑟𝑎𝑘𝑒𝑂𝑛

Compatibility IOA
A pair of I/O automata 𝒜* and 𝒜, are
compatible if
𝐻I ∩ 𝐴K = ∅ no unintended interactions
𝑂I ∩ 𝑂K = ∅ no duplication of authority

Extended to collection of automata in the
natural way

𝒜*

𝒜,
d

e

f

a

b

c

𝒜M

𝒜N

Composition of I/O automaton

Definition. For compatible automata 𝒜1 and 𝒜2 their
composition 𝒜1 || 𝒜2 is the structure 𝓐= 𝑋, Θ, 𝐴, 𝒟

– 𝑋 = 𝑋* ∪ 𝑋,
– Θ = 𝒙 ∈ 𝑣𝑎𝑙(𝑋) ∀ 𝑖 ∈ 1,2 : 𝒙⌈𝑋𝒊 ∈ Θ𝑖}
– 𝐻 = 𝐻1 ∪ 𝐻2

– O = 𝑂1 ∪ 𝑂2
– I = 𝐼1 ∪ 𝐼, ∖ 𝑂
– 𝒙, 𝑎, 𝒙′ ∈ 𝒟 iff for 𝑖 ∈ {1,2}

• 𝑎 ∈ 𝐴I and (𝒙⌈𝑋I, 𝑎, 𝒙@⌈𝑋) ∈ 𝒟I
• 𝑎 ∉ 𝐴I 𝒙⌈𝑋I = 𝒙⌈𝑋I

} 𝐴 = 𝐻 ∪ 𝑂 ∪ 𝐼

Theorem. The class of IO-automata is closed under composition. If 𝒜1
and 𝒜2 are compatible I/O automata then𝒜 = 𝒜1||𝒜2 is also an I/O
automaton.
Proof. Only 2 things to check
- Input, output, and internal actions are disjoint---by construction
- 𝒜 satisfies E1. Consider any state 𝒙 ∈ 𝑣𝑎𝑙 𝑋* ∪ 𝑋, and any input

action a ∈ 𝐼1 ∪ 𝐼, ∖ 𝑂 such that a is enabled in 𝒙.
- Suppose, w.lo.g. a ∈ 𝐼1
- We know by E1 of 𝒜1 that there exists 𝒙𝟏@ ∈ 𝑣𝑎𝑙(𝑋*) such that
𝒙⌈𝑋* →B 𝒙𝟏@

- 𝑎 ∉ 𝑂,, 𝐼,, 𝐻, (by compatibility)
- Therefore, 𝒙 →B (𝒙𝟏@ , 𝑥 𝑋, is a valid transition of 𝒜 (by definition

of composition)

Example: Sending process and channel

Automaton Sender(u)
variables internal

failed:Boolean := F
output send(m:M)
input fail
transitions:

output send(m)
pre ~failed
eff

input fail
pre true
eff failed := T

Loc 1

failed

send(m)
~failed

fail
true

failed := T

Sender Channel
send(m) receive(m)fail

Receiver
System

FIFO channel & Simple Failure Detector

Automaton Channel(M)
variables internal queue: Queue[M] := {}
actions input send(m:M)

output receive(m:M)
transitions:

input send(m)
pre true
eff queue := append(m, queue)

output receive(m)
pre head(queue)=m

eff queue := queue.tail

Automaton System(M)
variables queue: Queue[M] := {}, failed: Bool
actions input fail

output send(m:M), receive(m:M)
transitions:

output send(m)
pre ~failed
eff queue := append(m, queue)

output receive(m)
pre head(queue)=m

eff queue := queue.tail
input fail

pre true
eff failed := true

Automaton Sender(u)
variables internal

failed:Boolean := F
output send(m:M)
input fail
transitions:

output send(m)
pre ~failed
eff

input fail
pre true
eff failed := T

COMPOSING HYBRID SYSTEMS

Hybrid IO Automaton
In addition to interaction through shared actions
hybrid input/output automata (HIOA) will allow
interaction through shared variables

Recall a hybrid automaton 𝒜 = ⟨𝑉, Θ, 𝐴, 𝑫, 𝑻⟩

We will partition the set of variables 𝑉 of 𝒜 into
– 𝑋: internal or state variables (do not

interact)

– 𝑌: output variables

– 𝑈: input variables

• 𝑉 = 𝑋 ∪ 𝑌 ∪ 𝑈

This gives rise to hybrid I/O automata (HIOA) [Lynch,
Segala, Vaandrager 2002]

Plant

̇𝑥* = 𝑓* 𝑥*, 𝑥,
𝑦* = 𝑥*

Controller

𝑥, = 𝑔 𝑥,, 𝑥*
𝑦, = 𝑥,

𝑦*𝑦,

Reactivity: Input trajectory enabling
Consider a shared variable throttle controlled by 𝒜1 and listened-to or read by 𝒜2

Input trajectory enabling ensures that when 𝒜1 and 𝒜2 are composed then 𝒜2
can react to any signal generated by 𝒜*

If the trajectories of 𝒜, are defined by ordinary differential equations, then input
enabling is guaranteed if 𝒜* only generates piece-wise continuous signals (throttle)

Definition. An hybrid input/output automaton is a tuple 𝒜 = 〈𝑉, Θ, 𝐴,𝓓, 𝑻〉 where

• 𝑉 = 𝑋 ∪ 𝑈 ∪ 𝑌 is a set of variables

• Θ ⊆ 𝑣𝑎𝑙(𝑋) is the set of initial states

• 𝐴 = 𝐼 ∪ 𝑂 ∪ 𝐻 is a set of actions

• 𝒟 ⊆ 𝑣𝑎𝑙 𝑋 ×𝐴×𝑣𝑎𝑙 𝑋 is the set of transitions

• 𝑻 is a set of trajectories for 𝑉 closed under prefix, suffix, and concatenation

E1. For each 𝒙 ∈ 𝑣𝑎𝑙 𝑋 , 𝑎 ∈ 𝐼 there exists 𝒙@ ∈ 𝑣𝑎𝑙 𝑋 such that 𝒙 →B 𝒙′

E2. For each 𝒙 ∈ 𝑣𝑎𝑙 𝑋 ,𝒜 should be able to react to any trajectory 𝜂 of 𝑈.

i.e, ∃ 𝜏 ∈ 𝑻 with 𝜏. 𝑓𝑠𝑡𝑎𝑡𝑒 = 𝒙 such that 𝜏 ↓ 𝑈 is a prefix of 𝜂 and either (a) 𝜏 ↓
𝑈 = 𝜂 or (b) 𝜏 is closed and some 𝑎 ∈ 𝐻 ∪ 𝑂 is enabled at 𝜏. 𝑙𝑠𝑡𝑎𝑡𝑒.

Controller
𝒜*

Vehicle

𝒜,

𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒

Compatibility of hybrid automata

• For the interaction of hybrid
automata 𝒜1 and 𝒜2 to be
well-defined we need to ensure
that they have the right
interfaces

• compatibility conditions

Controller

𝒜*

Vehicle

𝒜,

Output 𝑎𝑐𝑐𝑒𝑙 Input 𝑎𝑐𝑐𝑒𝑙
𝑎𝑐𝑐𝑒𝑙

𝑏𝑟𝑎𝑘𝑒𝑂𝑛
Output 𝑏𝑟𝑎𝑘𝑒𝑂𝑛 Input 𝑏𝑟𝑎𝑘𝑒𝑂𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

Compatibility HIOA
A pair of hybrid I/O automata 𝒜* and 𝒜, are compatible if
𝐻I ∩ 𝐴K = ∅ no unintended discrete interactions
𝑂I ∩ 𝑂K = ∅ no duplication of discrete authority
𝑋I ∩ 𝑉K = ∅ no unintended continuous interactions

𝑌I ∩ 𝑌K = ∅ no duplication of continuous authority

Extended to collection of automata in the natural way and
captures most common notions of composition in, for
example, Matlab/Simulink

Composition
• For compatible 𝒜1 and 𝒜2 their composition 𝒜1 || 𝒜2 is the

structure 𝓐= 𝑉, Θ, 𝐴, 𝒟, 𝒯
• Variables 𝑉 = 𝑋 ∪ 𝑌 ∪ 𝑈

– 𝑋 = 𝑋1 ∪ 𝑋2, Y = 𝑌1 ∪ 𝑌2 ,𝑈 = 𝑈1 ∪ 𝑈, ∖ 𝑌

• Θ = 𝒙 ∈ 𝑣𝑎𝑙(𝑋) ∀ 𝑖 ∈ 1,2 : 𝒙⌈𝑋𝒊 ∈ Θ𝑖}
• Actions 𝐴 = 𝐻 ∪ 𝑂 ∪ 𝐼

– 𝐻 = 𝐻1 ∪ 𝐻2, O = 𝑂1 ∪ 𝑂2 ,I = 𝐼1 ∪ 𝐼, ∖ 𝑂,
• 𝒙, 𝑎, 𝒙′ ∈ 𝒟 iff for 𝑖 ∈ {1,2}

– 𝑎 ∈ 𝐴I and (𝒙⌈𝑋I, 𝑎, 𝒙@⌈𝑋I) ∈ 𝒟I
– 𝑎 ∉ 𝐴I 𝒙⌈𝑋I = 𝒙⌈𝑋I

• 𝒯: set of trajectories for V
– 𝜏 ∈ 𝒯 iff ∀ 𝑖 ∈ 1,2 ,		𝜏 ↓ 𝑉I ∈ 𝒯i

𝒜,

𝑥̇* = 𝑓(𝑥*, 𝑢,)

e

f

𝒜M

𝒜N

a1

a1

a1

a1

u2

e

f

u2

Closure under composition

• Conjecture. The class of HIOA is closed under
composition. If 𝒜1 and 𝒜2 are compatible HIOA then
𝒜1||𝒜2 is also a HIOA.

• Can we ensure that input trajectory enabled
condition is satisfied in the composed automaton?

• No, in general
– Additional conditions are needed Plant

Input 𝑢}
𝑥* = 𝑢}

output 𝑦~ = 𝑥*

Controller
Input y�

𝑥, = 𝑦~ + 1
Output 𝑢} = 𝑥,

𝑦~𝑢}

Example 2: Periodically Sending Process

Automaton PeriodicSend(u)
variables internal
clock: Reals := 0, z:Reals, failed:Boolean := F
signature output send(m:Reals)

input fail
transitions:

output send(m)
pre clock = u /\ m = z /\ ~failed
eff clock := 0
input fail
pre true
eff failed := T

trajectories:
evolve d(clock) = 1, d(z) = f(z)
invariant failed \/ clock≤u

Loc 1
𝑑 𝑐𝑙𝑜𝑐𝑘 = 1
𝑑 𝑧 = 𝑓(𝑧)

~failed⇒
𝒄𝒍𝒐𝒄𝒌 ≤ 𝒖

send(m)
clock = u /\ m = z /\ ~failed

clock := 0

clock:= 0

fail
true

failed := T

Time bounded channel & Simple
Failure Detector

Automaton Timeout(u,M)
variables: suspected: Boolean := F,

clock: Reals := 0
signature input receive(m:M)

output timeout
transitions:

input receive(m)
pre true
eff clock := 0; suspected := false;
output timeout
pre ~suspected /\ clock = u
eff suspected := true

trajectories:
evolve d(clock) = 1
invariant clock	≤ u	\/	suspected

Automaton Channel(b,M)
variables internal queue: Queue[M,Reals] := {}

clock: Reals := 0
signature input send(m:M)

output receive(m:M)
transitions:

input send(m)
pre true
eff queue := append(<m, clock+b>, queue)
output receive(m)
pre head(queue)[1]=m	∧

head(queue)[2]=clock
eff queue := queue.tail

trajectories:
evolve d(clock) = 1
invariant ∀<m,d>∈	queue:	d ≥ clock

Example 3: Oscillator and pulse generator

pulseGen Oscillator

pr
e:
𝑛𝑜
𝑤
≥
𝑇 �

��
ef

f:
𝑛𝑜
𝑤
≔
0

Composed automaton
On,Mode

𝑑 𝑛𝑜𝑤 = 1
𝑑 𝑥* = −𝑥* 𝑥*, + 0.9𝑥* + 0.9 − 𝑥, + 1
𝑑 𝑥, = 𝑥* − 2𝑥,
𝑛𝑜𝑤 ≤ 𝑇�¢

Off,Mode
𝑑 𝑛𝑜𝑤 = 1
𝑑 𝑥* = −𝑥* 𝑥*, + 0.9𝑥* + 0.9 − 𝑥, + 0
𝑑 𝑥, = 𝑥* − 2𝑥,
𝑛𝑜𝑤 ≤ 𝑇���

pr
e:
𝑛𝑜
𝑤
≥
𝑇 �

¢
ef

f:
𝑛𝑜
𝑤
≔
0

pulseGen

Oscillator
1

Oscillator
2

Oscillator
3

Oscillator
4

Oscillator
6

Oscillator
5

Cardiac oscillator network models, Grosu et al. CAV, HSCC 2007-2015

Restriction operation on exections

• Sometimes it is useful to restrict our attention to only some subset of
variables and actions in an execution

• Recall the restriction operations 𝑥⌈𝑉 𝑎𝑛𝑑 𝜏 ↓ 𝑉
• Let 𝛼 = 𝜏¤𝑎*𝜏*𝑎, be an execution fragment of a hybrid automaton with

set of variables 𝑉 and set of actions 𝐴. Let 𝐴′ be a set of actions and 𝑉′ be
a set of variables.

• Restriction of 𝛼 to (𝐴′, 𝑉′), written as 𝛼⌈(𝐴′, 𝑉′) is the sequence defined
inductively as:
– 𝛼⌈ 𝐴@, 𝑉@ = 𝜏 ↓ 𝑉@ if 𝛼 = 𝜏
– 𝛼 𝑎 𝜏 ⌈ 𝐴@, 𝑉@ =

• 𝛼 ⌈ 𝐴@, 𝑉@ 𝑎 (𝜏 ↓ 𝑉@) if a ∈ 𝐴′
• 𝛼 ⌈ 𝐴@, 𝑉@ 𝑐𝑜𝑛𝑐𝑎𝑡 (𝜏 ↓ 𝑉@) if a ∉ 𝐴@

• From the definition it follows 𝛼. 𝑙𝑠𝑡𝑎𝑡𝑒 ⌈𝑉@ = 𝛼⌈ 𝐴′, 𝑉@ . 𝑙𝑠𝑡𝑎𝑡𝑒 for
any 𝐴@, 𝑉′

Properties of Compositions
Proposition. Let 𝒜 = 𝒜*||𝒜,. 𝛼 is an execution fragment of 𝒜 iff
𝛼⌈ 𝐴I, 𝑉I , 𝑖 ∈ 1,2 are both execution fragments of 𝒜I.

• Proof of the forward direction. Fix 𝛼 and i. We prove this by induction on the
length of 𝛼.

• Base case: 𝛼 = 𝜏. 𝛼⌈ 𝐴I, 𝑉I = 𝜏 ↓ 𝑉I by definition of composition 𝜏 ↓ 𝑉I ∈ 𝑇I. So,
𝜏 ↓ 𝑉I ∈ 𝐹𝑟𝑎𝑔I

• 𝛼 = 𝛼′ 𝑎 𝜏 ⌈ 𝐴I, 𝑉I and 𝑎 ∈ 𝐴I and by induction hypothesis 𝛼′⌈ 𝐴I, 𝑉I ∈ 𝐹𝑟𝑎𝑔I.
Let 𝛼′⌈ 𝐴I, 𝑉I . lstate = 𝑣. By the definition of composition: 𝜏 ↓ 𝑉I ∈ 𝑇I.
– It remains to show that 𝑣⌈𝑉I →B 𝜏 ↓ 𝑉I . 𝑓𝑠𝑡𝑎𝑡𝑒. Since 𝑎 ∈ 𝐴I, by the definition of

composition: 𝛼′⌈ 𝐴I, 𝑉I . lstate →B 𝜏 ↓ 𝑉I. 𝑓𝑠𝑡𝑎𝑡𝑒

• 𝛼 = 𝛼′ 𝑎 𝜏 ⌈ 𝐴I, 𝑉I and 𝑎 ∉ 𝐴I and by induction hypothesis 𝛼′⌈ 𝐴I, 𝑉I ∈
𝐸𝑥𝑒𝑐I. Let 𝜏′ be the last trajectory in that execution.
– Since 𝑎 ∉ 𝐴I, by the definition of composition:𝜏@. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝜏 ↓ 𝑉I. 𝑓𝑠𝑡𝑎𝑡𝑒 . By concatenation

closure of ΤI, it follows that 𝜏@𝑐𝑜𝑛𝑐𝑎𝑡 𝜏 ↓ 𝑉I ∈ ΤI. Therefore 𝛼⌈ 𝐴I, 𝑉I ∈ 𝐸𝑥𝑒𝑐I.

properties of executions of
composed automata

• 𝛼 is an execution iff 𝛼⌈ 𝐴I, 𝑉I , 𝑖 ∈ 1,2 are both executions.

• 𝛼 is time bounded iff 𝛼⌈ 𝐴I, 𝑉I , 𝑖 ∈ 1,2 are both time bounded.

• 𝛼 is admissible iff 𝛼⌈ 𝐴I, 𝑉I , 𝑖 ∈ 1,2 are both admissible.

• 𝛼 is closed iff 𝛼⌈ 𝐴I, 𝑉I , 𝑖 ∈ 1,2 are both closed.

• 𝛼 is non-Zeno iff 𝛼⌈ 𝐴I, 𝑉I , 𝑖 ∈ 1,2 are both time non-Zeno.

Summary

• Composition operation
– I/O interfaces: actions and variables
– Reactivity/input enabling
– (non) Closure under composition

• Properties of executions preserved under
composition

• Inductive invariants

Example Inductive Invariance Proof
S:	∀	<m,d>	∈	x.queue:		x.clock ≤ d ≤ x.clock+b
Is an invariant for the timed channel.

Proof. Use the theorem.
• Check start condition. Holds vacuously as x.queue =	{}	[Def of	initial	

states]
• Check	trajectory	condition.	Consider	any	𝜏, let x = 𝜏.fstate and x’ =

𝜏.lstate and 𝜏.ltime = t. Assume x satisfies (1) and show that x’ also.
– x.queue =	x’.queue [trajectory	Def],	Fix	<m,d>	 in	x.queue
– x.clock ≤	d	[By	Assumption]	
– Suppose	x’.clock >	d		
– x’.clock - x.clock >	d	- x.clock
– t	>	d	- x.clock,	then	there	exists	t’	∈	𝜏.dom and	t’	<	t	where	𝜏(t’).clock	=	d
– By	invariant	𝜏.ltime =	t’	which	is	a	contradiction
– Also,	since		 d ≤	x.clock+b, d≤	x’.clock+t+b

• Check	transitions:
– 𝒙 →𝒓𝒆𝒄𝒆𝒊𝒗𝒆(𝒎) 𝒙’.	Follows	from	assumption	𝒙 ∈ 𝑺.
– 𝒙 →𝒔𝒆𝒏𝒅(𝒎) 𝒙’ …

