Composition

Sayan Mitra Verifying cyberphysical systems <u>mitras@illinois.edu</u>

- HW3 out
- Read chapter 5

What is composition?

- Complex models and systems are built by putting together **components** or **modules**
- **Composition** is the mathematical operation of *putting together*
- Leads to precise definition of module interfaces
- What properties are preserved under composition?

model of a network of oscillators [Huang et. al 14]

Powertrain model from Toyota [Jin et al. 15]

 Give an example of how you've built something more complex from simple components

• Throughout the lecture, think if your notion of composition is captured by what we define

Outline

- Composition operation
 Input/output interfaces
- I/O automata
- hybrid I/O automata
- Examples
- Properties of composition

Composition of automata

- Complex systems are built by "putting together" simpler subsystems
- Recall $\mathcal{A} = \langle X, \Theta, A, D \rangle$
- $\mathcal{A} = \mathcal{A}_1 || \mathcal{A}_2$
 - $\mathcal{A}_1, \mathcal{A}_2$ are the *component automata* and
 - \mathcal{A} is the *composed* automaton
 - | symbol for the composition operator

Composition: asynchronous modules

 $\mathcal{A}||\mathcal{B}|$

composition: modules synchronize

Composition of (discrete) automata

- More generally, some transitions of \mathcal{A} and \mathcal{B} may synchronize, while others may not synchronize
- Further, some transitions may be **controlled** by \mathcal{A} which when occurs **forces** the corresponding transition of \mathcal{B}
- Thus, we will partition the set of actions A of $\mathcal{A} = \langle X, \Theta, A, D \rangle$ into
 - *H*: internal (do not synchronize)
 - O: **output** (synchronized and controlled by \mathcal{A})
 - I: input (synchronized and controlled by some other automaton)
- $A = H \cup O \cup I$
- This gives rise to I/O automata [Lynch, Tuttle 1996]

Reactivity: Input enabling

- Consider a shared action ${\rm brakeOn}$ controlled by ${\cal A}_1$ and listend-to or read by ${\cal A}_2$
- Input enabling ensures that when A_1 and A_2 are composed then A_2 can react to **brakeOn**

Definition. An **input/output automaton** is a tuple $\mathcal{A} = \langle X, \Theta, A, \mathcal{D} \rangle$ where

- X is a set of names of variables
- $\Theta \subseteq val(X)$ is the set of initial states
- $A = I \cup O \cup H$ is a set of names of actions
- $\mathcal{D} \subseteq val(X) \times A \times val(X)$ is the set of transitions and \mathcal{A} satisfies the input enabling condition:

E1. For each $x \in val(X)$, $a \in I$ there exists $x' \in val(X)$ such that $x \rightarrow_a x'$

Compatibility IOA

A pair of I/O automata \mathcal{A}_1 and \mathcal{A}_2 are compatible if

- $H_i \cap A_j = \emptyset$ no unintended interactions
- $O_i \cap O_j = \emptyset$ no duplication of authority

Extended to collection of automata in the natural way

Composition of I/O automaton

Definition. For compatible automata \mathcal{A}_1 and \mathcal{A}_2 their composition $\mathcal{A}_1 \mid \mid \mathcal{A}_2$ is the structure $\mathcal{A} = (X, \Theta, A, D)$

$$-X = X_1 \cup X_2$$

$$- \Theta = \{ \mathbf{x} \in val(X) | \forall i \in \{1,2\}: \mathbf{x}[X_i \in \Theta_i\} \}$$

$$-H = H_1 \cup H_2$$

$$- 0 = O_1 \cup O_2 \qquad \qquad \} \quad A = H \cup O \cup I$$

$$-I = I_1 \cup I_2 \setminus O$$

$$(x, a, x') \in \mathcal{D}$$
 iff for $i \in \{1, 2\}$

•
$$a \in A_i$$
 and $(\mathbf{x}[X_i, a, \mathbf{x}'[X]) \in \mathcal{D}_i$

•
$$a \notin A_i \mathbf{x}[X_i = \mathbf{x}[X_i]$$

Theorem. The class of IO-automata is closed under composition. If \mathcal{A}_1 and \mathcal{A}_2 are compatible I/O automata then $\mathcal{A} = \mathcal{A}_1 || \mathcal{A}_2$ is also an I/O automaton.

Proof. Only 2 things to check

- Input, output, and internal actions are disjoint---by construction
- \mathcal{A} satisfies **E1**. Consider any state $\mathbf{x} \in val(X_1 \cup X_2)$ and any input action $a \in I_1 \cup I_2 \setminus O$ such that a is enabled in \mathbf{x} .
- Suppose, w.lo.g. $a \in I_1$
- We know by **E1** of \mathcal{A}_1 that there exists $x'_1 \in val(X_1)$ such that $x[X_1 \rightarrow_a x'_1]$
- $a \notin O_2, I_2, H_2$ (by compatibility)
- Therefore, $x \rightarrow_a (x'_1, x[X_2))$ is a valid transition of \mathcal{A} (by definition of composition)

Example: Sending process and channel

FIFO channel & Simple Failure Detector

Automaton Sender(u) variables internal failed:Boolean := F output send(m:M) input fail transitions: output send(m) pre ~failed. eff input fail pre true eff failed := T

Automaton Channel(M) variables internal queue: Queue[M] := {} actions input send(m:M) output receive(m:M) transitions: input send(m) pre true eff queue := append(m, queue) output receive(m) pre head(queue)=m. eff queue := queue.tail **Automaton** System(M) variables queue: Queue[M] := {}, failed: Bool actions input fail output send(m:M), receive(m:M) transitions: output send(m) pre ~failed **eff** queue := append(m, queue) output receive(m) pre head(queue)=m eff queue := queue.tail input fail pre true eff failed := true

COMPOSING HYBRID SYSTEMS

Hybrid IO Automaton

In addition to interaction through shared actions hybrid input/output automata (HIOA) will allow interaction through shared variables

Recall a hybrid automaton $\mathcal{A} = \langle V, \Theta, A, D, T \rangle$

We will partition the set of variables V of \mathcal{A} into

- X: internal or state variables (do not interact)
- Y: **output** variables
- U: input variables
- $V = X \cup Y \cup U$

This gives rise to hybrid I/O automata (HIOA) [Lynch, Segala, Vaandrager 2002]

Reactivity: Input trajectory enabling

Consider a shared variable **throttle** controlled by \mathcal{A}_1 and listened-to or read by \mathcal{A}_2

Input trajectory enabling ensures that when \mathcal{A}_1 and \mathcal{A}_2 are composed then \mathcal{A}_2

can react to any signal generated by \mathcal{A}_1

If the trajectories of \mathcal{A}_2 are defined by ordinary differential equations, then input enabling is guaranteed if \mathcal{A}_1 only generates piece-wise continuous signals (throttle)

Definition. An hybrid input/output automaton is a tuple $\mathcal{A} = \langle V, \Theta, A, \mathcal{D}, T \rangle$ where

- $V = X \cup U \cup Y$ is a set of variables ٠
- $\Theta \subseteq val(X)$ is the set of initial states ٠
- $A = I \cup O \cup H$ is a set of actions ٠
- $\mathcal{D} \subseteq val(X) \times A \times val(X)$ is the set of transitions ٠
- **T** is a set of trajectories for V closed under prefix, suffix, and concatenation ٠

E1. For each $x \in val(X)$, $a \in I$ there exists $x' \in val(X)$ such that $x \rightarrow_a x'$

E2. For each $x \in val(X)$, \mathcal{A} should be able to react to any trajectory η of U.

i.e, $\exists \tau \in T$ with τ . *fstate* = x such that $\tau \downarrow U$ is a prefix of η and either (a) $\tau \downarrow$

 $U = \eta$ or (b) τ is closed and some $a \in H \cup O$ is enabled at τ . *lstate*.

Compatibility of hybrid automata

 For the interaction of hybrid automata A₁ and A₂ to be well-defined we need to ensure that they have the right *interfaces*

Compatibility HIOA

A pair of hybrid I/O automata \mathcal{A}_1 and \mathcal{A}_2 are compatible if

 $H_i \cap A_j = \emptyset$ no unintended discrete interactions $O_i \cap O_j = \emptyset$ no duplication of discrete authority $X_i \cap V_j = \emptyset$ no unintended continuous interactions $Y_i \cap Y_j = \emptyset$ no duplication of continuous authority

Extended to collection of automata in the natural way and captures most common notions of composition in, for example, Matlab/Simulink

Composition

- For compatible A₁ and A₂ their composition A₁ || A₂ is the structure A = (V, Θ, A, D, T)
- Variables $V = X \cup Y \cup U$

 $-X = X_1 \cup X_2$, $Y = Y_1 \cup Y_2$, $U = U_1 \cup U_2 \setminus Y$

• $\Theta = \{ x \in val(X) | \forall i \in \{1,2\} : x[X_i \in \Theta_i \} \}$

• Actions
$$A = H \cup O \cup I$$

- $H = H_1 \cup H_2$, $O = O_1 \cup O_2$, $I = I_1 \cup I_2 \setminus O$,

- $(\mathbf{x}, a, \mathbf{x}') \in \mathcal{D}$ iff for $i \in \{1, 2\}$ - $a \in A_i$ and $(\mathbf{x}[X_i, a, \mathbf{x}'[X_i]) \in \mathcal{D}_i$ - $a \notin A_i \mathbf{x}[X_i = \mathbf{x}[X_i]$
- \mathcal{T} : set of **trajectories** for V

 $- \tau \in \mathcal{T} \text{ iff } \forall i \in \{1,2\}, \tau \downarrow V_i \in \mathcal{T}_i$

Closure under composition

- Conjecture. The class of HIOA is closed under composition. If \mathcal{A}_1 and \mathcal{A}_2 are compatible HIOA then $\mathcal{A}_1 || \mathcal{A}_2$ is also a HIOA.
- Can we ensure that input trajectory enabled condition is satisfied in the composed automaton?
- No, in general
 - Additional conditions are needed

Example 2: Periodically Sending Process

send(m) clock = u / m = z / ~failed clock := 0 Loc 1 d(clock) = 1d(z) = f(z)~failed⇒ clock:= 0 $clock \leq u$ tai true failed := T

Automaton PeriodicSend(u) variables internal clock: Reals := 0, z:Reals, failed:Boolean := F **signature output** send(m:Reals) **input** fail transitions: output send(m) **pre** clock = $u \land m = z \land ~$ failed eff clock := 0 input fail pre true eff failed := T trajectories: evolve d(clock) = 1, d(z) = f(z)invariant failed \/ clock ≤ u

Time bounded channel & Simple Failure Detector

Automaton Timeout(u,M) variables: suspected: Boolean := F, clock: Reals := 0 **signature input** receive(m:M) output timeout transitions: input receive(m) pre true **eff** clock := 0; suspected := false; output timeout **pre** \sim suspected /\ clock = u **eff** suspected := true trajectories: evolve d(clock) = 1 invariant clock \leq u \/ suspected

```
Automaton Channel(b,M)
variables internal queue: Queue[M,Reals] := ·
       clock: Reals := 0
signature input send(m:M)
       output receive(m:M)
transitions:
   input send(m)
   pre true
   eff queue := append(<m, clock+b>, queue)
   output receive(m)
   pre head(queue)[1]=m \land
        head(queue)[2]=clock
   eff queue := queue.tail
trajectories:
   evolve d(clock) = 1
   invariant \forall < m, d > \in queue: d \ge clock
```

Example 3: Oscillator and pulse generator

Composed automaton

Cardiac oscillator network models, Grosu et al. CAV, HSCC 2007-2015

Restriction operation on exections

- Sometimes it is useful to restrict our attention to only some subset of variables and actions in an execution
- Recall the **restriction** operations $x[V \text{ and } \tau \downarrow V]$
- Let $\alpha = \tau_0 a_1 \tau_1 a_2$ be an execution fragment of a hybrid automaton with set of variables V and set of actions A. Let A' be a set of actions and V' be a set of variables.
- **Restriction** of α to (A', V'), written as $\alpha[(A', V')]$ is the sequence defined inductively as:
 - $\alpha[(A',V') = \tau \downarrow V' \text{ if } \alpha = \tau$
 - $\alpha a \tau \left[(A', V') = \right]$
 - $\alpha [(A', V') \ a \ (\tau \downarrow V') \text{ if } a \in A'$
 - $\alpha [(A', V') concat (\tau \downarrow V') \text{ if } a \notin A'$
- From the definition it follows α. lstate [V' = α[(A', V'). lstate for any A', V'

Properties of Compositions

Proposition. Let $\mathcal{A} = \mathcal{A}_1 || \mathcal{A}_2$. α is an execution fragment of \mathcal{A} iff $\alpha[(A_i, V_i), i \in \{1, 2\}$ are both execution fragments of \mathcal{A}_i .

- Proof of the forward direction. Fix α and i. We prove this by induction on the length of α .
- Base case: $\alpha = \tau$. $\alpha[(A_i, V_i) = \tau \downarrow V_i$ by definition of composition $\tau \downarrow V_i \in T_i$. So, $\tau \downarrow V_i \in Frag_i$
- $\alpha = \alpha' \ a \ \tau \ [(A_i, V_i) \ and \ a \in A_i \ and \ by induction \ hypothesis \ \alpha'[(A_i, V_i) \in Frag_i.$ Let $\alpha'[(A_i, V_i)]$. Istate = v. By the definition of composition: $\tau \downarrow V_i \in T_i$.
 - It remains to show that $v[V_i \rightarrow_a (\tau \downarrow V_i). fstate$. Since $a \in A_i$, by the definition of composition: $\alpha'[(A_i, V_i). \text{ lstate } \rightarrow_a \tau \downarrow V_i. fstate$
- $\alpha = \alpha' a \tau [(A_i, V_i) \text{ and } a \notin A_i \text{ and by induction hypothesis } \alpha'[(A_i, V_i) \in Exec_i$. Let τ' be the last trajectory in that execution.
 - − Since $a \notin A_i$, by the definition of composition: τ' . $lstate = \tau \downarrow V_i$. fstate. By concatenation closure of T_i , it follows that $\tau' concat \tau \downarrow V_i \in T_i$. Therefore $\alpha[(A_i, V_i) \in Exec_i]$.

properties of executions of composed automata

- α is an *execution* iff $\alpha[(A_i, V_i), i \in \{1,2\}$ are both executions.
- α is time bounded iff $\alpha[(A_i, V_i), i \in \{1,2\}$ are both time bounded.
- α is *admissible* iff $\alpha[(A_i, V_i), i \in \{1, 2\}$ are both admissible.
- α is *closed* iff $\alpha[(A_i, V_i), i \in \{1, 2\}$ are both closed.
- α is *non-Zeno* iff $\alpha[(A_i, V_i), i \in \{1,2\}$ are both time non-Zeno.

Summary

- Composition operation
 - I/O interfaces: actions and variables
 - Reactivity/input enabling
 - (non) Closure under composition
- Properties of executions preserved under composition
- Inductive invariants

Example Inductive Invariance Proof

S: $\forall < m,d > \in x.queue$: $x.clock \le d \le x.clock+b$ Is an invariant for the timed channel.

Proof. Use the theorem.

- Check start condition. Holds vacuously as x.queue = {} [Def of initial states]
- Check trajectory condition. Consider any τ , let **x** = τ .fstate and **x'** = τ .lstate and τ .ltime = t. Assume **x** satisfies (1) and show that **x'** also.
 - x.queue = x'.queue [trajectory Def], Fix <m,d> in x.queue
 - **x.**clock \leq d [By Assumption]
 - Suppose x'.clock > d
 - \mathbf{x} .clock \mathbf{x} .clock > d \mathbf{x} .clock
 - − t > d **x.**clock, then there exists t' ∈ τ .dom and t' < t where τ (t').clock = d
 - By **invariant** τ .ltime = t' which is a contradiction
 - Also, since $d \le x$.clock+b, $d \le x'$.clock+t+b
- Check transitions:
 - − $x \rightarrow_{receive(m)} x'$. Follows from assumption $x \in S$.
 - $x \rightarrow_{send(m)} x' \dots$