Cyberphysical Systems: Invariants

Sayan Mitra
Verifying cyberphysical systems
mitras@illinois.edu

mailto:mitras@illinois.edu

How to prove invariants of hybrid automata

Theorem 7.1. Given an HIOA A = (X, 0,4, D, T), if a set of states I € val(X) satisfies the following:
* (Start condition) For any starting state x € 0, x € I and

* (Transition closure) For any actiona € 4, ifand x -, x' and x € [then x’ € I, and

* (Trajectory closure) For any trajectory T € T if 7. fstate € I then 1. [state € |

Then I is an inductive invariant of A.

How to prove invariants of hybrid automata

Theorem 7.1. Given an HIOA A = (X, 0, A, D, T), if a set of states I € val(X) satisfies the following:
e (Start condition) For any starting state x € ©,x € I and

* (Transition closure) For any actiona € 4, ifand x -, x' and x € I then x’ € I, and

* (Trajectory closure) For any trajectory T € T if T. fstate € I then 1. [state € |

Then [is an inductive invariant of A.

Proof. Consider any reachable state x € Reach 4. By the definition of a reachable state, there exists an execution a of A
with a. [state = x. We proceed by induction on the length of the execution a. For the base case, a consists of a single
starting state x € 0, and, by the start condition, x € I. For the inductive step, we consider two subcases:

Case 1: a = a’a p(x), where a € A and p(x) is a point trajectory at x .
By the induction hypothesis, we know that a’. [state € I.

By invoking the transition closure, we obtain x € I.

Case 2: « = a't, where T is a trajectory of A and 7. Istate = x

By the induction hypothesis, a'.lstate € I and by

invoking the trajectory closure, we deduce that 7. [state = x € |

An application

automaton Bouncingball(c,h,g)
variables: x: Reals := h, v: Reals := 0

actions: bounce

transitions:
bounce
prex=0/\v<0
effv:=-cv

trajectories:
Locl
evolve d(x) =v; d(v) = -g

invariantx > 0

Candidate invariant: "stays above ground”
Ip:x =2 0={u€val({x,v})|ufx =0}

——

Applying Theorem 7.1:
* Consider any initial stateu € Q;u|[x =h =0

¢ uEIO

 Consider any transition U =p,ynce U

* From precondition we know u|[x = 0; from effect we know
u'.x = u.x thereforeu'[x =0=0

* u, € IO
* Consider any trajectoryt € T

* From mode invariant we know that for Vt €
T.dom,t(t)[x = 0

* |t follows that 7. [state[x = 0

* What part of Bouncingball was used ? What could be
changed?

An application

automaton Bouncingball(c,h,g)
variables: x: Reals := h, v: Reals := 0

actions: bounce

transitions:
bounce
prex=0/\v<0
effv:=-cv

trajectories:
Locl
evolve d(x) =v; d(v) = -g

invariantx > 0

Candidate invariant: stays above ground and
below h”

Ih: h=>x=>0
Applying Theorem 7.1

* Consider any initial stateu € O; u|x = h
° U € Ih

* Consider any transition 4 =, nce U

* From precondition we know u[x = 0; from effect we
know u'.x = u.x therefore u'[x = 0

® u’ € Ih
* Consider any trajectoryt € T

* From mode invariant and inductive hypothesis we
know that for Vt € t.dom ,7(t)[x = 0 and,7(0)[x €
|0, h] and that 7 is a solution of d(x) = v; d(v) = -g

* Is this adequate to infer 1. [state € I},?

Stre ngth en Ed Candidate invariant: “'stays above ground and below h”
invariant ly:v* = 29 (hc** —x) = 0

automaton Bouncingball(c,h,g)
variables: x: Reals :=h, v: Reals:=0 ® Consider any initial stateu € O; u|x = h; u|lk =0

Applying Theorem 7.1:

k: Nat :=0 *uc€l,
ac“°f‘f’ bounce * Exercise: Finish the rest
transitions:

bounce

prex=0/\v<0

effv:.=-cv;ki=k+1
trajectories:

Locl

evolve d(x) = v; d(v) = -g

invariantx > 0

Summary

 Theorem 7.1 gives a sufficient condition for proving inductive
Invariants

* Not all invariants are inductive
* We often have to strengthen invariants to make them inductive
* Read examples in Chapter 7

Floyd-Hoare Proofs

The core idea of inductive invariants dates back to the classical program analysis technique called
Floyd-Hoare logic

The logic provides a set of rules for deducing correctness of automata, programs

The logic is built on Hoare triples, which describes how the execution of a statement (or line of
code) changes the state of the automaton:

P c Q where

* Pand Q are predicates on the program variables and are called the precondition and
postcondition

* cis a statement describing program variable change

The triple implies that when the precondition P is met, execution of ¢ establishes the postcondition
Q

Sub-tangential conditions. Checking trajectory
conditions without solving ODEs

(Trajectory closure) For any trajectory T € T if 1. fstate € I then
T.lstate € 1

Lemma. Consider the ODE x = f(x) for state variable x, describing T

Let [be a compact set containing the initial set ®. Then, I is an
inductive invariant of the above ODE if at every state x on the
boundary of I, the vector f(x) is pointing inwards from the boundary.

That is az;ix) .f(x) = 0, where the boundary of I is defined by P(x) =
0

Checking sub-tangential condition

Fo=w—ao\/0mge — 0

p £

Assignments

* Chapter 7
e Examples: Mutual exclusion, helicopter model
* Barrier certificates

* Project proposals due thursday

