Cyberphysical Systems: Invariants

Sayan Mitra Verifying cyberphysical systems <u>mitras@illinois.edu</u>

How to prove invariants of hybrid automata

Theorem 7.1. Given an HIOA $\mathcal{A} = \langle X, \Theta, A, D, T \rangle$, if a set of states $I \subseteq val(X)$ satisfies the following:

- (Start condition) For any starting state $x \in \Theta$, $x \in I$ and
- (Transition closure) For any action $a \in A$, if and $x \rightarrow_a x'$ and $x \in I$ then $x' \in I$, and
- (Trajectory closure) For any trajectory $\tau \in \mathbf{T}$ if τ . $fstate \in I$ then τ . $lstate \in I$

Then I is an inductive invariant of \mathcal{A} .

How to prove invariants of hybrid automata

Theorem 7.1. Given an HIOA $\mathcal{A} = \langle X, \Theta, A, D, T \rangle$, if a set of states $I \subseteq val(X)$ satisfies the following:

- (Start condition) For any starting state $x \in \Theta, x \in I$ and
- (Transition closure) For any action $a \in A$, if and $x \rightarrow_a x'$ and $x \in I$ then $x' \in I$, and
- (Trajectory closure) For any trajectory $\tau \in \mathbf{T}$ if τ . $fstate \in I$ then τ . $lstate \in I$

Then *I* is an inductive invariant of \mathcal{A} .

Proof. Consider any reachable state $x \in Reach_{\mathcal{A}}$. By the definition of a reachable state, there exists an execution α of \mathcal{A} with α . *lstate* = x. We proceed by induction on the length of the execution α . For the base case, α consists of a single starting state $x \in \Theta$, and, by the *start condition*, $x \in I$. For the inductive step, we consider two subcases:

Case 1: $\alpha = \alpha' a p(x)$, where $a \in A$ and p(x) is a point trajectory at x.

By the induction hypothesis, we know that α' . *lstate* \in *I*.

By invoking the *transition closure*, we obtain $x \in I$.

Case 2: $\alpha = \alpha' \tau$, where τ is a trajectory of \mathcal{A} and τ . *lstate* = x

By the *induction hypothesis*, α' . *lstate* \in *I* and by

invoking the *trajectory closure*, we deduce that τ . *lstate* = $x \in I$

An application

automaton Bouncingball(c,h,g)

variables: x: Reals := h, v: Reals := 0

actions: bounce

transitions:

bounce

pre *x* = 0 /\ *v* < 0

eff v := -cv

trajectories:

Loc1

evolve d(x) = v; d(v) = -g

invariant $x \ge 0$

Candidate invariant: ``stays above ground'' $I_0: x \ge 0 \equiv \{ u \in val(\{x, v\}) | u[x \ge 0 \} \}$ Applying Theorem 7.1:

• Consider any initial state $\boldsymbol{u} \in \Theta$; $\boldsymbol{u}[x = h \ge 0$

• $u \in I_0$

- Consider any transition $u
 ightarrow_{bounce} u'$
 - From precondition we know u[x = 0; from effect we know u'. x = u. x therefore $u'[x = 0 \ge 0]$
 - $\boldsymbol{u}' \in I_0$
- Consider any trajectory $\tau \in T$
 - From mode invariant we know that for $\forall t \in \tau. dom, \tau(t) [x \ge 0]$
 - It follows that τ . $lstate[x \ge 0$
- What part of Bouncingball was used ? What could be changed?

An application

automaton Bouncingball(c,h,g)

variables: x: Reals := h, v: Reals := 0

actions: bounce

transitions:

bounce

pre *x* = 0 /\ *v* < 0

eff v := -cv

trajectories:

Loc1

```
evolve d(x) = v; d(v) = -g
```

invariant $x \ge 0$

Candidate invariant: ``stays above ground and below h'' $I_h: h \ge x \ge 0$

Applying Theorem 7.1:

• Consider any initial state $u \in \Theta$; u[x = h]

• $u \in I_h$

- Consider any transition $u \rightarrow_{bounce} u'$
 - From precondition we know $\boldsymbol{u}[x = 0;$ from effect we know $\boldsymbol{u}'.x = \boldsymbol{u}.x$ therefore $\boldsymbol{u}'[x = 0]$

• $u' \in I_h$

- Consider any trajectory $\tau \in T$
 - From mode invariant and inductive hypothesis we know that for ∀t ∈ τ. dom, τ(t) [x ≥ 0 and, τ(0) [x ∈ [0, h] and that τ is a solution of d(x) = v; d(v) = -g
 - Is this adequate to infer τ . *lstate* $\in I_h$?

Strengthened invariant

automaton Bouncingball(c,h,g)

variables: x: Reals := h, v: Reals := 0

k: Nat := 0

actions: bounce

transitions:

bounce

pre *x* = 0 /\ *v* < 0

eff v := -cv; k:= k + 1

trajectories:

Loc1

```
evolve d(x) = v; d(v) = -g
```

```
invariant x \ge 0
```

Candidate invariant: ``stays above ground and below h'' $I_{v}: v^{2} - 2g(hc^{2k} - x) = 0$

Applying Theorem 7.1:

• Consider any initial state $u \in \Theta$; u[x = h; u[k = 0]

• $u \in I_v$

• Exercise: Finish the rest

Summary

- Theorem 7.1 gives a sufficient condition for proving **inductive** invariants
- Not all invariants are inductive
- We often have to **strengthen** invariants to make them inductive
- Read examples in Chapter 7

Floyd-Hoare Proofs

The core idea of inductive invariants dates back to the classical program analysis technique called **Floyd-Hoare logic**

The logic provides a set of rules for deducing correctness of automata, programs

The logic is built on **Hoare triples**, which describes how the execution of a statement (or line of code) changes the state of the automaton:

P c Q where

- *P* and *Q* are predicates on the program variables and are called the precondition and postcondition
- *c* is a statement describing program variable change

The triple implies that when the precondition *P* is met, execution of *c* establishes the postcondition Q

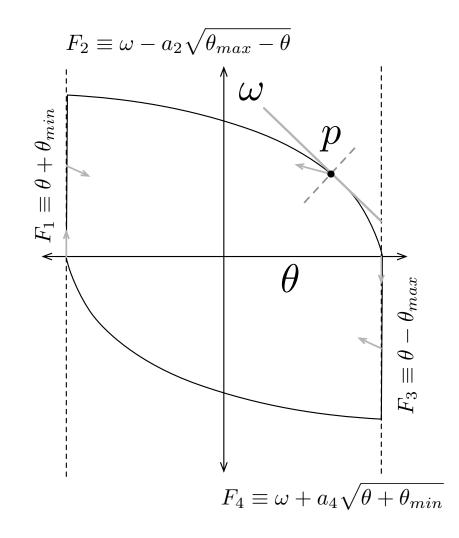
Sub-tangential conditions. Checking trajectory conditions without solving ODEs

(Trajectory closure) For any trajectory $\tau \in \mathbf{T}$ if τ . *fstate* $\in I$ then τ . *lstate* $\in I$

Lemma. Consider the ODE $\dot{x} = f(x)$ for state variable x, describing T

Let *I* be a compact set containing the initial set Θ . Then, *I* is an inductive invariant of the above ODE if at every state x on the boundary of *I*, the vector f(x) is pointing inwards from the boundary. That is $\frac{\partial P(x)}{\partial x}$. $f(x) \ge 0$, where the boundary of *I* is defined by P(x) = 0

Checking sub-tangential condition



Assignments

- Chapter 7
 - Examples: Mutual exclusion, helicopter model
 - Barrier certificates
- Project proposals due thursday