
Cyberphysical Systems: Invariants

Sayan Mitra
Verifying cyberphysical systems

mitras@illinois.edu

mailto:mitras@illinois.edu

How to prove invariants of hybrid automata

Theorem 7.1. Given an HIOA 𝒜 = ⟨𝑋, Θ, 𝐴, 𝑫, 𝑻⟩, if a set of states 𝐼 ⊆ 𝑣𝑎𝑙 𝑋 satisfies the following:

• (Start condition) For any starting state 𝒙 ∈ Θ, 𝒙 ∈ 𝐼 and

• (Transition closure) For any action a ∈ 𝐴, if and 𝒙 →𝒂 𝒙5 and 𝒙 ∈ 𝐼 then 𝒙5 ∈ 𝐼, and
• (Trajectory closure) For any trajectory 𝜏 ∈ 𝑻 if 𝜏. 𝑓𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼 then 𝜏. 𝑙𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼
Then 𝐼 is an inductive invariant of 𝒜.

How to prove invariants of hybrid automata
Theorem 7.1. Given an HIOA 𝒜 = ⟨𝑋, Θ, 𝐴, 𝑫, 𝑻⟩, if a set of states 𝐼 ⊆ 𝑣𝑎𝑙 𝑋 satisfies the following:

• (Start condition) For any starting state 𝒙 ∈ Θ, 𝒙 ∈ 𝐼 and

• (Transition closure) For any action a ∈ 𝐴, if and 𝒙 →𝒂 𝒙5 and 𝒙 ∈ 𝐼 then 𝒙5 ∈ 𝐼, and

• (Trajectory closure) For any trajectory 𝜏 ∈ 𝑻 if 𝜏. 𝑓𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼 then 𝜏. 𝑙𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼

Then 𝐼 is an inductive invariant of 𝒜.

Proof. Consider any reachable state 𝑥 ∈ 𝑅𝑒𝑎𝑐ℎ𝒜 . By the definition of a reachable state, there exists an execution 𝛼 of 𝒜
with 𝛼. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝑥. We proceed by induction on the length of the execution 𝛼. For the base case, 𝛼 consists of a single
starting state 𝒙 ∈ Θ, and, by the start condition, 𝒙 ∈ 𝐼. For the inductive step, we consider two subcases:

Case 1: 𝛼 = 𝛼5𝑎 𝑝(𝒙), where 𝑎 ∈ 𝐴 and 𝑝(𝒙) is a point trajectory at 𝒙 .

By the induction hypothesis, we know that 𝛼5. 𝑙𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼.

By invoking the transition closure, we obtain 𝒙 ∈ 𝐼.

Case 2: 𝛼 = 𝛼5𝜏, where 𝜏 is a trajectory of 𝒜 and 𝜏. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝒙

By the induction hypothesis, 𝛼5. 𝑙𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼 and by

invoking the trajectory closure, we deduce that 𝜏. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝒙 ∈ 𝐼

An application
Candidate invariant: ``stays above ground’’
𝐼D: 𝑥 ≥ 0 ≡ 𝒖 ∈ 𝑣𝑎𝑙 𝑥, 𝑣 𝒖⌈𝑥 ≥ 0 }
Applying Theorem 7.1:
• Consider any initial state 𝒖 ∈ Θ; 𝒖⌈𝑥 = ℎ ≥ 0

• 𝒖 ∈ 𝐼D
• Consider any transition 𝒖 →MNOPQR 𝒖′

• From precondition we know 𝒖⌈𝑥 = 0; from effect we know
𝒖5. 𝑥 = 𝒖. 𝑥 therefore 𝒖5⌈𝑥 = 0 ≥ 0

• 𝒖′ ∈ 𝐼D
• Consider any trajectory 𝜏 ∈ 𝑇

• From mode invariant we know that for ∀𝑡 ∈
𝜏. 𝑑𝑜𝑚 , 𝜏 𝑡 ⌈𝑥 ≥ 0

• It follows that 𝜏. 𝑙𝑠𝑡𝑎𝑡𝑒⌈𝑥 ≥ 0

• What part of Bouncingball was used ? What could be
changed?

automaton Bouncingball(c,h,g)

variables: x: Reals := h, v: Reals := 0

actions: bounce

transitions:

bounce

pre x = 0 /\ v < 0

eff v := -cv

trajectories:

Loc1

evolve d(x) = v; d(v) = -g

invariant 𝒙 ≥ 𝟎

An applica<on
Candidate invariant: ``stays above ground and
below h’’
𝐼Z: ℎ ≥ 𝑥 ≥ 0
Applying Theorem 7.1:
• Consider any iniXal state 𝒖 ∈ Θ; 𝒖⌈𝑥 = ℎ

• 𝒖 ∈ 𝐼Z
• Consider any transiXon 𝒖 →MNOPQR 𝒖′

• From precondiXon we know 𝒖⌈𝑥 = 0; from effect we
know 𝒖5. 𝑥 = 𝒖. 𝑥 therefore 𝒖5⌈𝑥 = 0

• 𝒖′ ∈ 𝐼Z
• Consider any trajectory 𝜏 ∈ 𝑇

• From mode invariant and inducXve hypothesis we
know that for ∀𝑡 ∈ 𝜏. 𝑑𝑜𝑚 , 𝜏 𝑡 ⌈𝑥 ≥ 0 and , 𝜏 0 ⌈𝑥 ∈
[0, ℎ] and that 𝜏 is a soluXon of d(x) = v; d(v) = -g

• Is this adequate to infer 𝜏. 𝑙𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼Z?

automaton Bouncingball(c,h,g)

variables: x: Reals := h, v: Reals := 0

actions: bounce

transitions:

bounce

pre x = 0 /\ v < 0

eff v := -cv

trajectories:

Loc1

evolve d(x) = v; d(v) = -g

invariant 𝒙 ≥ 𝟎

Strengthened
invariant

Candidate invariant: ``stays above ground and below h’’
𝐼 : 𝑣_ − 2𝑔 ℎ𝑐_c − 𝑥 = 0

Applying Theorem 7.1:

• Consider any initial state 𝒖 ∈ Θ; 𝒖⌈𝑥 = ℎ; 𝒖⌈𝑘 = 0
• 𝒖 ∈ 𝐼^

• Exercise: Finish the rest

automaton Bouncingball(c,h,g)

variables: x: Reals := h, v: Reals := 0

k: Nat := 0

actions: bounce

transitions:

bounce

pre x = 0 /\ v < 0

eff v := -cv; k:= k + 1

trajectories:

Loc1

evolve d(x) = v; d(v) = -g

invariant 𝒙 ≥ 𝟎

Summary

• Theorem 7.1 gives a sufficient condition for proving inductive
invariants
• Not all invariants are inductive
• We often have to strengthen invariants to make them inductive
• Read examples in Chapter 7

Floyd-Hoare Proofs

The core idea of inducXve invariants dates back to the classical program analysis technique called
Floyd-Hoare logic

The logic provides a set of rules for deducing correctness of automata, programs

The logic is built on Hoare triples, which describes how the execuXon of a statement (or line of
code) changes the state of the automaton:

P c Q where

• P and Q are predicates on the program variables and are called the precondiEon and
postcondiEon

• c is a statement describing program variable change

The triple implies that when the precondiXon P is met, execuXon of c establishes the postcondiXon
Q

Sub-tangential conditions. Checking trajectory
conditions without solving ODEs

(Trajectory closure) For any trajectory 𝜏 ∈ 𝑻 if 𝜏. 𝑓𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼 then
𝜏. 𝑙𝑠𝑡𝑎𝑡𝑒 ∈ 𝐼

Lemma. Consider the ODE �̇� = 𝑓 𝑥 for state variable 𝑥, describing 𝑻
Let 𝐼 be a compact set containing the initial set Θ. Then, 𝐼 is an
inductive invariant of the above ODE if at every state 𝒙 on the
boundary of 𝐼, the vector 𝑓(𝑥) is pointing inwards from the boundary.
That is fg 𝒙

f𝒙
. 𝑓 𝑥 ≥ 0, where the boundary of 𝐼 is defined by P 𝒙 =

0

Checking sub-tangential condition

✓

F4 ⌘ ! + a4
p

✓ + ✓min

F
3
⌘

✓
�

✓ m
a
x

F2 ⌘ ! � a2
p
✓max � ✓

F
1
⌘

✓
+

✓ m
in p

!

Assignments

• Chapter 7
• Examples: Mutual exclusion, helicopter model
• Barrier certificates

• Project proposals due thursday

