Abstractions

Sayan Mitra Verifying cyberphysical systems <u>mitras@illinois.edu</u>

### Outline

- Abstractions
- Simulation relations
- Composition and substitutivity

#### Abstractions and Simulations

Consider models that have the same external interface (input/output variables and actions)

We would like to *approximate* one (hybrid) automaton  $H_1$  with another one  $H_2$ 

- We can over-approximate the reachable states of  $H_1$  with those of  $H_2$
- This would ensure that invariants of  $H_2$  carry over to  $H_1$
- We would like to go beyond invariants, and want to have more general requirements (e.g., CTL) carry over

 $H_2$  should be *simpler* (smaller description, fewer states, transitions, linear dynamics, etc.) and preserve some properties of  $H_1$  (and not others)

Verifying some requirements of  $H_2$  can then carry over requirements to  $H_1$ 

#### Finite state examples



#### Finite state examples





B **simulates** A and vice versa. A and B are **bisimilar**.



C simulates both A and B. C is an abstraction of both A and B.

#### How to prove B simulates A?



Show there exists a simulation relation from states of A to states of B. Say, R = ((A0, B02), (A2, B02), (A1, B13), (A3, B13))

Show that for every transition  $Ai \rightarrow_A Ai'$  and  $(Ai, Bj) \in R$  there exists Bj' such that 1.  $Bj \rightarrow_B Bj'$ 2.  $(Ai', Bj') \in R$ 3.  $Trace(Bj \rightarrow_B Bj') = Trace(Ai \rightarrow_A Ai')$ 

#### Forward simulation relation

Consider a pair of automat  $\mathcal{A}_1 = \langle Q_1, \Theta_1, A_1, D_1 \rangle$  and  $\mathcal{A}_2 = \langle Q_2, \Theta_2, A_2, D_2 \rangle$ . Recall *trace* of an execution preserves the visible part of an execution

**Definition**. A relation  $R \subseteq Q_1 \times Q_2$  is a forward simulation relation from  $\mathcal{A}_1$  to  $\mathcal{A}_2$  if 1. For every  $q_1 \in \Theta_1$  there exists a  $q_2 \in \Theta_2$  such that  $q_1 R q_2$ 

- 2. For every transition  $q_1 \rightarrow_1^{a_1} q_1'$  and  $q_1 R q_2$  there exists  $q_2', a_2$  such that
  - $q_2 \rightarrow^{a_2}_2 q'_2$
  - $q'_1 R q'_2$
  - $Trace(q_1, a_1, q'_1) = Trace(q_2, a_2, q_2')$

**Theorem.** If there exists a forward simulation from  $\mathcal{A}_1$  to  $\mathcal{A}_2$  then  $Traces_1 \subseteq Traces_2$ .

**Theorem.** If there exists a forward simulation from  $\mathcal{A}_1$  to  $\mathcal{A}_2$  then  $Traces_1 \subseteq Traces_2$ .

#### Finite state examples





Check that A also simulates B and that C simulates both A and B.

Therefore,  $Traces_A = Traces_B \subseteq Traces_C$ ?

Does A simulate C?

### A Simulation Example

- ${\mathcal A}$  is an implementation of  ${\mathcal B}$
- Is there a forward simulation from  $\mathcal{A}$  to  $\mathcal{B}$  ?
- Consider the forward simulation relation



•  $\mathcal{A}: 2 \rightarrow_c 4$  cannot be simulated by  $\mathcal{B}$  from 2' although (2,2') are related.

#### Simulations for hybrid systems

Forward simulation relation from  $\mathcal{A}_1$  to  $\mathcal{A}_2$  is a relation  $\mathbb{R} \subseteq val(X_1) \times val(X_2)$  such that

- 1. For every  $\mathbf{x}_1 \in \Theta_1$  there exists  $\mathbf{x}_2 \in \Theta_2$  such that  $\mathbf{x}_1 \mathbb{R} \mathbf{x}_2$
- 2. For every  $\mathbf{x}_1 \rightarrow_{a_1} \mathbf{x}_1' \in \mathcal{D}$  and  $\mathbf{x}_2$  such that  $\mathbf{x}_1 \mathbb{R} \mathbf{x}_2$ , there exists  $\mathbf{x}_2'$  such that
  - $\mathbf{x}_2 \rightarrow_{a_1} \mathbf{x}_2'$  and
  - x<sub>1</sub>' R x<sub>2</sub>'
- 3. For every  $\tau_1 \in \mathcal{T}_1$  and  $\mathbf{x}_2$  such that  $\tau_1 \cdot fstate \ \mathbf{R} \cdot \mathbf{x}_2$ , there exists  $\tau_2 \in \mathcal{T}_2$  that
  - $x_2 = \tau_2$ . *fstate* and
  - $x_1' R \tau_2$ . *lstate*
  - $\tau_2$ . dom =  $\tau_1$ . dom

**Theorem.** If there exists a forward simulation relation from hybrid automaton  $\mathcal{A}_1$  to  $\mathcal{A}_2$  then for every execution of  $\mathcal{A}_1$  there exists a corresponding execution of  $\mathcal{A}_2$ .

#### Simulation relations for hybrid automata

• Recall condition 3 in definition of simulation relation:  $Trace(Bj \rightarrow_B Bj') =$ 



- Hybrid automata have transitions and trajectories
- Different types of simulation depending on different notions for "Trace"
  - Match for all variable values, action names, and time duration of trajectories (abstraction)
  - Match variables but not time (time abstract simulation)
  - Match a subset (external) of variables and actions (trace inclusion) Lecture Slides by Sayan Mitra mitras@illinois.edu
  - Match single action/trajectory of A with a sequence of actions and trajectories of B

#### Timer simulates Ball (w.r.t. timing of bounce actions)

Automaton Ball( $c,v_0,g$ ) variables: x: Reals := 0v: Reals :=  $v_0$ actions: bounce transitions: bounce pre x = 0 / v < 0eff v := -cvtrajectories: evolve d(x) = v; d(v) = -ginvariant  $x \ge 0$ 

Automaton Timer(c,  $v_0$  g) variables: analog timer: Reals :=  $2v_0/g$ , n:Naturals=0; actions: bounce transitions: bounce pre timer = 0 eff n:=n+1; timer :=  $\frac{2v_0}{ac^n}$ trajectories: evolve d(timer) = -1 invariant timer  $\geq 0$ 

# Some nice properties of Forward Simulation

Let  $\mathcal{A}, \mathcal{B}$ , and  $\mathcal{C}$  be comparable TAs. If  $R_1$  is a forward simulation from  $\mathcal{A}$  to  $\mathcal{B}$ and  $R_2$  is a forward simulation from  $\mathcal{B}$  to  $\mathcal{C}$ , then  $R_1 \circ R_2$  is a forward simulation from  $\mathcal{A}$  to  $\mathcal{C}$ 

 ${\mathcal A}$  implements  ${\mathcal C}$ 

The **implementation relation** is a preorder of the set of all (comparable) hybrid automata

(A preorder is a reflexive and transitive relation)

If R is a forward simulation from  $\mathcal{A}$  to  $\mathcal{B}$  and R<sup>-1</sup> is a forward simulation from  $\mathcal{B}$  to  $\mathcal{A}$  then R is called a **bisimulation** and  $\mathcal{B}$  are  $\mathcal{A}$  **bisimilar** 

Bisimilarity is an equivalence relation

(reflexive, transitive, and symmetric)

### Remark on Simulations and Stability

Stability not preserved by ordinary simulations and bisimulations [Prabhakar, et. al 15]



time time Stability Preserving Simulations and Bisimulations for Hybrid Systems, Prabhakar, Dullerud, Viswanathan IEEE Trans. Automatic Control 2015

### **Backward Simulations**

**Backward simulation** relation from  $\mathcal{A}_1$  to  $\mathcal{A}_2$  is a relation  $\mathbb{R} \subseteq Q_1 \times Q_2$  such that

- 1. If  $\mathbf{x}_1 \in \Theta_1$  and  $\mathbf{x}_1 R \mathbf{x}_2$  then  $\mathbf{x}_2 \in \Theta_2$  such that
- 2. If  $\mathbf{x'_1} \mathbb{R} \mathbf{x'_2}$  and  $\mathbf{x_1} \mathbf{a} \rightarrow \mathbf{x_1'}$  then
  - $x_2 \beta \rightarrow x_2'$  and
  - x<sub>1</sub> R x<sub>2</sub>
  - Trace( $\boldsymbol{\beta}$ ) = a<sub>1</sub>
- 3. For every  $\tau \in \mathcal{T}$  and  $\mathbf{x}_2 \in \mathbf{Q}_2$  such that  $\mathbf{x}_1' \in \mathbf{x}_2'$ , there exists  $\mathbf{x}_2$  such that
  - $x_2 \beta \rightarrow x_2'$  and
  - x<sub>1</sub> R x<sub>2</sub>
  - Trace( $\boldsymbol{\beta}$ ) =  $\boldsymbol{\tau}$

**Theorem.** If there exists a backward simulation relation from  $\mathcal{A}_1$  to  $\mathcal{A}_2$  then  $ClosedTraces_1 \subseteq ClosedTraces_2$ 

# Abstractions II

#### Abstraction recap

- Defined what it means for  $\mathcal{A}_2$  to be abstraction of  $\mathcal{A}_1$
- $Traces_{\mathcal{A}_1} \subseteq Traces_{\mathcal{A}_2}$
- $\mathcal{A}_1 \preccurlyeq_T \mathcal{A}_2$
- If  $\mathcal{A}_1 \preccurlyeq_T \mathcal{A}_2$  and  $\mathcal{A}_2 \preccurlyeq_T \mathcal{A}_1$  then  $\mathcal{A}_1 \preccurlyeq_T \mathcal{A}_3$
- Transitive, ≤<sub>T</sub> defines a preordering on compatible automata
- We saw methods for proving  $\mathcal{A}_1 \preccurlyeq_T \mathcal{A}_2$ 
  - Forward simulation and backward simulation
- $\leq_T$  defines a preorder



### Outline

- Abstractions and composition
- CEGAR

#### Substituting an automaton with its abstraction



#### Substituting an automaton with its abstraction



# How is the abstract system related to the concrete system?



er

#### Hybrid IO Automaton

Recall a hybrid automaton  $\mathcal{A} = \langle V, \Theta, A, D, T \rangle$ 

We will partition the set of variables V of  $\mathcal{A}$  into

- X: internal or state variables (do not interact)
- *Y*: **output** variables
- U: input variables
- $V = X \cup Y \cup U$

This gives rise to hybrid I/O automata (HIOA) [Lynch, Segala, Vaandrager 2002]

We defined composition of compatible HIOA  $\mathcal{A} = \mathcal{A}_1 || \mathcal{A}_2$ 



### Composition of Hybrid Automata

The parallel composition operation on automata enable us to construct larger and more complex models from simpler automata modules

 $\mathcal{A}_1$  to  $\mathcal{A}_2$  are compatible if  $X_1 \cap X_2 = H_1 \cap A_2 = H_2 \cap A_1 = \emptyset$ 

Variable names are disjoint; Action names of one are disjoint with the internal action names of the other

#### Composition

- For compatible  $\mathcal{A}_1$  and  $\mathcal{A}_2$  their composition  $\mathcal{A}_1 \mid | \mathcal{A}_2$  is the structure  $\mathcal{A} = (V, \Theta, A, \mathcal{D}, \mathcal{T})$
- Variables  $V = X \cup Y \cup U$ 
  - $X = X_1 \cup X_2$ ,  $Y = Y_1 \cup Y_2$ ,  $U = U_1 \cup U_2 \setminus Y$
- $\Theta = \{ x \in val(X) | \forall i \in \{1,2\}: x[X_i \in \Theta_i \} \}$
- Actions  $A = H \cup O \cup I$ 
  - $H = H_1 \cup H_2$ ,  $O = O_1 \cup O_2$ ,  $I = I_1 \cup I_2 \setminus O$ ,
- $(\mathbf{x}, a, \mathbf{x}') \in \mathcal{D}$  iff for  $i \in \{1, 2\}$ 
  - $a \in A_i$  and  $(\mathbf{x}[X_i, a, \mathbf{x}'[X_i]) \in \mathcal{D}_i$
  - $a \notin A_i \mathbf{x}[X_i = \mathbf{x}[X_i]$
- $\mathcal{T}$ : set of **trajectories** for V
  - $\tau \in \mathcal{T} \text{ iff } \forall i \in \{1,2\}, \ \tau \downarrow V_i \in \mathcal{T}_i$



## Modeling a Simple Failure Detector System

- Periodic send
- Channel
- Timeout



### Composition

- For compatible  $\mathcal{A}_1$  and  $\mathcal{A}_2$  their composition  $\mathcal{A}_1 \mid \mid \mathcal{A}_2$  is the structure  $\mathcal{A} = (X, Q, \Theta, E, H, D, \mathcal{T})$
- $X = X_1 \cup X_2$  (disjoint union)
- $Q \subseteq val(X)$
- $\Theta = \{ \mathbf{x} \in Q | \forall i \in \{1,2\}: \mathbf{x}. Xi \in \Theta_i \}$
- $H = H_1 \cup H_2$  (disjoint union)
- $E = E_1 \cup E_2$  and  $A = E \cup H$
- $(\mathbf{x}, a, \mathbf{x}') \in \mathcal{D}$  iff
  - $a \in H_1$  and  $(\mathbf{x}. X_1, a, \mathbf{x}'. X_1) \in \mathcal{D}_1$  and  $\mathbf{x}. X_2 = \mathbf{x}. X_2$
  - $a \in H_2$  and  $(\mathbf{x}. X_2, a, \mathbf{x}'. X_2) \in \mathcal{D}_2$  and  $\mathbf{x}. X_1 = \mathbf{x}. X_1$
  - Else,  $(x. X_1, a, x'. X_1) \in \mathcal{D}_1$  and  $(x. X_2, a, x'. X_2) \in \mathcal{D}_2$
- *T*: set of **trajectories** for X
  - $\tau \in \mathcal{T} \text{ iff } \forall i \in \{1,2\}, \ \tau.Xi \in \mathcal{T}_i$

*Theorem . A* is also a hybrid automaton.

# Example: Send || TimedChannel

**Automaton** Channel(b,M) variables: internal queue: Queue[M,Reals] := {} clock1: Reals := 0 actions: external send(m:M), receive(m:M) transitions: send(m) pre true **eff** queue := append(<m, clock1+b>, queue) receive(m) pre head(queue)[1] = m**eff** queue := queue.tail trajectories: evolve d(clock1) = 1 stop when  $\exists$  m, d,  $\langle$ m,d $\rangle \in$  queue  $\land$  clock=d

Automaton PeriodicSend(u, M) variables: internal clock: Reals := 0 actions: external send(m:M) transitions: send(m) pre clock = u eff clock := 0 trajectories: evolve d(clock) = 1 stop when clock=u

#### Composed Automaton

```
Automaton SC(b,u)
 variables: internal queue: Queue[M,Reals] := {}
          clock s, clock c: Reals := 0
 actions: external send(m:M), receive(m:M)
 transitions:
    send(m)
    pre clock s = u
    eff queue := append(<m, clock_c+b>, queue); clock_s := 0
    receive(m)
    pre head(queue)[1] = m
    eff queue := queue.tail
 trajectories:
    evolve d(clock_c) = 1; d(clock_s) = 1
    stop when
          (\exists m, d, <m,d> \in queue \land clock_c=d)
```

```
\bigvee (clock_s=u)
```

### Modeling a Simple Failure Detector System

- Periodic send || Channel
- Periodic send || Channel || Timeout



# Time bounded channel & Simple Failure Detector

```
Automaton Timeout(u,M)
variables: internal suspected: Boolean := F,
```

```
clock: Reals := 0
```

actions: external receive(m:M), timeout

transitions:

```
receive(m)
pre true
eff clock := 0; suspected := false;
timeout
pre ~suspected /\ clock = u
eff suspected := true
trajectories:
evolve d(clock) = 1
stop when clock = u /\ ~suspected
```

#### General composition



#### Some properties about composed automata

- Let  $\mathcal{A} = \mathcal{A}_1 \mid \mid \mathcal{A}_2$  and let  $\alpha$  be an execution fragment of  $\mathcal{A}$ .
  - Then  $\alpha_i = \alpha | (A_i, X_i)$  is an execution fragment of  $\mathcal{A}_i$
  - $\alpha$  is time-bounded iff both  $\alpha_1$  and  $\alpha_2\,$  are time-bounded
  - $\alpha$  is admissible iff both  $\alpha_1$  and  $\alpha_2\,$  are admissible
  - $\alpha$  is closed iff both  $\alpha_1$  and  $\alpha_2\,$  are closed
  - $\alpha$  is non-Zeno iff both  $\alpha_1$  and  $\alpha_2\,$  are non-Zeno
  - $\alpha$  is an execution iff both  $\alpha_1$  and  $\alpha_2$  are executions
- Traces  $_{\mathcal{A}} = \{ \boldsymbol{\beta} \mid \boldsymbol{\beta} \mid \boldsymbol{\beta}_{i} \in \text{Traces } \mathcal{A}_{i} \}$
- See examples in the TIOA monograph

# A trace theorem restriction from composition of I/O automata

Theorem 5.5 (from Theory of Timed I/O Automata by Lynch et. al.)

Suppose  $\mathcal{A} = \mathcal{A}_1 || \mathcal{A}_2$  and let E be the set of input/output actions of A. Then  $\operatorname{Traces}_{\mathcal{A}}$  is exactly the set of (E,  $\emptyset$ )-sequences whose restrictions to  $\mathcal{A}_1$  and  $\mathcal{A}_2$  are traces of  $\mathcal{A}_1$  and  $\mathcal{A}_2$ , respectively. That is,

Traces<sub>*A*</sub> = {β | β is an (E, Ø)-sequence and β[( $E_{A_1}$ ||Ø) ∈ Traces<sub>*A*<sub>i</sub></sub>, i ∈ {1, 2}}.

#### Substitutivity

**Theorem 1.** Suppose  $\mathcal{A}_1$ ,  $\mathcal{A}_2$  and  $\mathcal{B}$  have the same external interface and  $\mathcal{A}_1$ ,  $\mathcal{A}_2$  are compatible with  $\mathcal{B}$ . If  $\mathcal{A}_1 \preccurlyeq \mathcal{A}_2$  then  $\mathcal{A}_1 || \mathcal{B} \preccurlyeq \mathcal{A}_2 || \mathcal{B}$ 

### Substutivity

**Theorem 2.** Suppose  $\mathcal{A}_1 \mathcal{A}_2 \mathcal{B}_1$  and  $\mathcal{B}_2$  are HAs and  $\mathcal{A}_1 \mathcal{A}_2$  have the same external actions and  $\mathcal{B}_1 \mathcal{B}_2$  have the same external actions and  $\mathcal{A}_1 \mathcal{A}_2$  is compatible with each of  $\mathcal{B}_1$  and  $\mathcal{B}_2$ .

 $|\mathsf{If} \ \mathcal{A}_1 \preccurlyeq \mathcal{A}_2 \text{ and } \mathcal{B}_1 \preccurlyeq \mathcal{B}_2 \text{ then } \mathcal{A}_1 \mid \mid \mathcal{B}_1 \preccurlyeq |\mathcal{A}_2| \mid \mathcal{B}_2 .$ 

• Proof.  $\mathcal{A}_1 \mid \mid \mathcal{B}_1 \preccurlyeq \mathcal{A}_2 \mid \mid \mathcal{B}_1$  $\mathcal{A}_2 \mid \mid \mathcal{B}_1 \preccurlyeq \mathcal{A}_2 \mid \mid \mathcal{B}_2$ By transitivity of implementation relation  $\mathcal{A}_1 \mid \mid \mathcal{B}_1 \preccurlyeq \mathcal{A}_2 \mid \mid \mathcal{B}_2$ 

#### A stronger substitutivity result

**Theorem 3.**  $\mathcal{A}_1 \mid \mid \mathcal{B}_2 \preccurlyeq \mathcal{A}_2 \mid \mid \mathcal{B}_2$  and  $\mathcal{B}_1 \preccurlyeq \mathcal{B}_2$  then  $\mathcal{A}_1 \mid \mid \mathcal{B}_1 \preccurlyeq \mathcal{A}_2 \mid \mid \mathcal{B}_2$ .

#### A stronger substitutivity result

Theorem 3.  $\mathcal{A}_1 \mid | \mathcal{B}_2 \leq \mathcal{A}_2 \mid | \mathcal{B}_2$  and  $\mathcal{B}_1 \leq \mathcal{B}_2$  then  $\mathcal{A}_1 \mid | \mathcal{B}_1 \leq \mathcal{A}_2 \mid | \mathcal{B}_2$ .

Proof. Let  $\beta \in \operatorname{Traces}_{\mathcal{A}_1 || \mathcal{B}_1}$ . By Theorem 5.5 (of LVS TIOA),  $\beta[(E_{\mathcal{A}_1} || \phi) \in \operatorname{Traces}_{\mathcal{A}_1} \text{ and } \beta[(E_{\mathcal{B}_1} || \phi) \in \operatorname{Traces}_{\mathcal{B}_1}$ . Since  $\mathcal{B}_1 \leq \mathcal{B}_2$ 

 $\beta[(E_{\mathcal{B}_2}||\emptyset) \in Traces_{\mathcal{B}_2}]$ 

By Theorem 5.5,  $\beta \in \operatorname{Traces}_{\mathcal{A}_1 \mid \mid \mathcal{B}_2}$ Since  $\mathcal{A}_1 \mid \mid \mathcal{B}_2 \preccurlyeq \mathcal{A}_2 \mid \mid \mathcal{B}_2$  by assumption,  $\beta \in \operatorname{Traces}_{\mathcal{A}_2 \mid \mid \mid \mathcal{B}_2}$  Counter-example guided abstraction-refinement

# Counterexample guided abstraction refinement (CEGAR)

- A general algorithmic framework for automatically constructing and verifying property-specific abstractions [Clarke:2000]
- CEGAR has been applied to discrete automata, software, and hybrid systems [Holzman 00,Ball 01, Alur 2006,Clarke 2003, Fehnker2005, Prabhakar 15, Roohi 17]
- We will discuss the basic idea of the CEGAR and the key design choices, and their implications.



# Idea of CEGAR

#### Key design choices

- Space of the abstract automata (finite, timed, linear)
- Model checker for abstract automaton
- Counter-example validation procedure
- Refinement strategy







$$\begin{split} S_4 &= \operatorname{Pre}_A(S_5) \cap R^{-1}(q_4) \neq \emptyset \\ S_3 &= \operatorname{Pre}_A(S_4) \quad \cap R^{-1}(q_3) \neq \emptyset \\ S_2 &= \operatorname{Pre}_A(S_3) \cap R^{-1}(q_2) \neq \emptyset \\ S_1 &= \operatorname{Pre}_A(S_2) \cap R^{-1}(q_1) = \emptyset \end{split}$$