
Abstractions

Sayan Mitra
Verifying cyberphysical systems

mitras@illinois.edu

http://illinois.edu

Outline

• Abstractions
• Simulation relations
• Composition and substitutivity

Abstractions and Simulations

Consider models that have the same external interface (input/output variables and actions)

We would like to approximate one (hybrid) automaton 𝐻" with another one 𝐻#
• We can over-approximate the reachable states of 𝐻" with those of 𝐻#
• This would ensure that invariants of 𝐻# carry over to 𝐻"
• We would like to go beyond invariants, and want to have more general requirements (e.g., CTL) carry over

𝐻# should be simpler (smaller description, fewer states, transitions, linear dynamics, etc.) and preserve some
properties of 𝐻" (and not others)

Verifying some requirements of 𝐻# can then carry over requirements to 𝐻"

Lecture Slides by Sayan Mitra mitras@illinois.edu

Finite state examples

A0 A1

0

1

1

0

A2 A3

0

1

B02 B13

0

1

C03 0,1

TracesA= (01)*

TracesB= 01*

TracesC= {0,1}*

A

B

C

Lecture Slides by Sayan Mitra mitras@illinois.edu

Finite state examples

A0 A1

0

1

1

0

A2 A3

0

1

B02 B13

0

1

C03 0,1

B simulates A and vice versa.
A and B are bisimilar.

C simulates both A and B.
C is an abstraction of both A and B.

A

B

C

Lecture Slides by Sayan Mitra mitras@illinois.edu

How to prove B simulates A?

Show there exists a simulation relation from states of A to states of B. Say, 𝑅 =
((𝐴0, 𝐵02), (𝐴2, 𝐵02), (𝐴1, 𝐵13), (𝐴3, 𝐵13))

Show that for every transition 𝐴𝑖 →1 𝐴𝑖′ and 𝐴𝑖, 𝐵𝑗 ∈ 𝑅 there exists 𝐵𝑗′ such that
1. 𝐵𝑗 →6 𝐵𝑗′
2. 𝐴𝑖′, 𝐵𝑗′ ∈ 𝑅
3. 𝑇𝑟𝑎𝑐𝑒 𝐵𝑗 →6 𝐵𝑗< = 𝑇𝑟𝑎𝑐𝑒 𝐴𝑖 →1 𝐴𝑖<

A0 A1

0

1

1

0
A2 A3

0

1
A

B02 B13

0

1

B

Lecture Slides by Sayan Mitra mitras@illinois.edu

Forward simulation relation

Consider a pair of automat 𝒜" = ⟨𝑄", Θ", 𝐴", 𝐷"⟩ and 𝒜# = ⟨𝑄#, Θ#, 𝐴#, 𝐷#⟩.
Recall trace of an execution preserves the visible part of an execution

Definition. A relation 𝑅 ⊆ 𝑄"×𝑄# is a forward simulation relation from 𝒜" to 𝒜# if
1. For every 𝑞" ∈ Θ" there exists a 𝑞# ∈ Θ# such that 𝑞"𝑅𝑞#
2. For every transition 𝑞" →"

FG 𝑞"< and 𝑞"𝑅𝑞# there exists q#< , 𝑎# such that
• 𝑞# →#

FI 𝑞#<

• 𝑞"< 𝑅 𝑞#<

• 𝑇𝑟𝑎𝑐𝑒 𝑞", 𝑎", 𝑞"< = 𝑇𝑟𝑎𝑐𝑒 𝑞#, 𝑎#, 𝑞#′

Theorem. If there exists a forward simulation from 𝒜" to 𝒜# then 𝑇𝑟𝑎𝑐𝑒𝑠" ⊆𝑇𝑟𝑎𝑐𝑒𝑠#.

Theorem. If there exists a forward simulation from 𝒜" to 𝒜# then
𝑇𝑟𝑎𝑐𝑒𝑠" ⊆ 𝑇𝑟𝑎𝑐𝑒𝑠#.

Finite state examples

A0 A1

0

1

1

0

A2 A3

0

1

B02 B13

0

1

C03
1

Check that A also simulates B and that C
simulates both A and B.

Therefore, TracesA = TracesB ⊆ 𝑇𝑟𝑎𝑐𝑒𝑠K?

Does A simulate C?

A

B

C

0

Lecture Slides by Sayan Mitra mitras@illinois.edu

A Simulation Example

• 𝒜 is an implementation of ℬ
• Is there a forward simulation from
𝒜 to ℬ ?

• Consider the forward simulation
relation

• 𝒜 ∶ 2→O 4 cannot be simulated by
ℬ from 2’ although (2,2’) are
related.

1

2’ 3

4

a b

c

1 2

3

4

a

b

c

2

𝒜

ℬ
a

Lecture Slides by Sayan Mitra mitras@illinois.edu

Simulations for hybrid systems
Forward simulation relation from 𝒜1 to 𝒜2 is a relation R ⊆ 𝑣𝑎𝑙 𝑋" × 𝑣𝑎𝑙(𝑋#)
such that

1. For every x1 ∈	Θ1 there exists x2 ∈	Θ2 such that x1 R x2

2. For every x1 →𝒂𝟏 x1’∈	𝒟 and x2 such that x1 R x2, there exists x2’ such that
• x2 →𝒂𝟏 x2’ and
• x1’ R x2’

3. For every 𝝉𝟏 ∈	𝒯" and x2 such that 𝜏". 𝑓𝑠𝑡𝑎𝑡𝑒 R x2, there exists 𝜏# ∈ 𝒯# that
• x2 = 𝜏#. 𝑓𝑠𝑡𝑎𝑡𝑒 and
• x1’ R 𝜏#. 𝑙𝑠𝑡𝑎𝑡𝑒
• 𝜏#. dom = 𝜏". 𝑑𝑜𝑚

Theorem. If there exists a forward simulation relation from hybrid automaton 𝒜1 to
𝒜2 then for every execution of 𝒜1 there exists a corresponding execution of 𝒜#.

Lecture Slides by Sayan Mitra mitras@illinois.edu

Simulation relations for hybrid automata
• Recall condition 3 in definition of simulation relation: 𝑇𝑟𝑎𝑐𝑒 𝐵𝑗 →6 𝐵𝑗< =
𝑇𝑟𝑎𝑐𝑒 𝐴𝑖 →1 𝐴𝑖<

• Hybrid automata have transitions and trajectories

• Different types of simulation depending on different notions for “Trace”

• Match for all variable values, action names, and time duration of trajectories
(abstraction)

• Match variables but not time (time abstract simulation)

• Match a subset (external) of variables and actions (trace inclusion)

• Match single action/trajectory of A with a sequence of actions and trajectories of B
Lecture Slides by Sayan Mitra mitras@illinois.edu

Timer simulates Ball (w.r.t. timing of bounce actions)

Automaton Ball(c,v0,g)
variables:

x: Reals := 0
v: Reals := v0

actions: bounce
transitions:

bounce
pre x = 0 /\ v < 0
eff v := -cv

trajectories:
evolve d(x) = v; d(v) = -g
invariant 𝒙 ≥ 𝟎

Automaton Timer(c, v0, g)
variables: analog
timer: Reals := 2𝑣e/𝑔,
n:Naturals=0;
actions: bounce

transitions:
bounce

pre timer = 0
eff n:=n+1; timer := #hi

jOk

trajectories:
evolve d(timer) = -1
invariant timer ≥ 0

Lecture Slides by Sayan Mitra mitras@illinois.edu

Some nice properties of Forward Simulation
Let 𝒜,ℬ, and 𝒞 be comparable TAs. If R1 is a forward simulation from 𝒜 to ℬ
and R2 is a forward simulation from ℬ to 𝒞, then R1 ∘ R2 is a forward
simulation from 𝒜 to 𝒞
𝒜 implements 𝒞
The implementation relation is a preorder of the set of all (comparable)
hybrid automata

(A preorder is a reflexive and transitive relation)

If R is a forward simulation from 𝒜 to ℬ and R-1 is a forward simulation from
ℬ to 𝒜 then R is called a bisimulation and ℬ are 𝒜 bisimilar

Bisimilarity is an equivalence relation
(reflexive, transitive, and symmetric)

Lecture Slides by Sayan Mitra mitras@illinois.edu

Remark on Simulations and Stability

Stability not preserved by ordinary simulations and bisimulations
[Prabhakar, et. al 15]

time time
Stability Preserving Simulations and Bisimulations for Hybrid Systems, Prabhakar, Dullerud,
Viswanathan IEEE Trans. Automatic Control 2015

Lecture Slides by Sayan Mitra mitras@illinois.edu

Backward Simulations
Backward simulation relation from 𝒜1 to 𝒜2 is a relation R ⊆
𝑄"× 𝑄# such that

1. If x1 ∈	Θ1and x1 R x2 then x2 ∈	Θ2 such that
2. If x’1 R x’2 and x1—aà x1’ then

• x2 –𝜷à x2’ and
• x1 R x2

• Trace(𝜷) = a1

3. For every 𝝉∈	𝒯 and x2 ∈	Q2 such that x1’ R x2’, there exists x2 such that
• x2 –𝜷à x2’ and
• x1 R x2

• Trace(𝜷) = 𝝉

Theorem. If there exists a backward simulation relation from 𝒜1 to
𝒜2 then ClosedTraces1 ⊆ ClosedTraces2

Lecture Slides by Sayan Mitra mitras@illinois.edu

Abstractions II

Lecture Slides by Sayan Mitra mitras@illinois.edu

Abstraction recap

• Defined what it means for 𝒜# to be abstraction of𝒜"

• 𝑇𝑟𝑎𝑐𝑒𝑠𝒜G ⊆ 𝑇𝑟𝑎𝑐𝑒𝑠𝒜I

• 𝒜" ≼s 𝒜#

• If 𝒜" ≼s 𝒜# and 𝒜# ≼s 𝒜" then 𝒜" ≼s 𝒜t

• Transitive, ≼s defines a preordering on compatible
automata
• We saw methods for proving 𝒜" ≼s 𝒜#

• Forward simulation and backward simulation

• ≼s defines a preorder

𝒜" 𝒜#≼

Outline

• Abstractions and composition
• CEGAR

Concrete system

Substituting an automaton with its abstraction

Plant Controller

Abstract system

Substituting an automaton with its abstraction

Plant

Controller

Abstract
Controller

How is the abstract system related to the
concrete system?

Controller

Abstract system

Plant
Abstract
Controll

er

Concrete system

Plant Control
ler

Abstract
Controller≼

≼

Does

imply

?

Hybrid IO Automaton
Recall a hybrid automaton 𝒜 = ⟨𝑉, Θ, 𝐴, 𝑫, 𝑻⟩

We will partition the set of variables 𝑉 of 𝒜 into

• 𝑋: internal or state variables (do not interact)

• 𝑌: output variables

• 𝑈: input variables

• 𝑉 = 𝑋 ∪ 𝑌 ∪ 𝑈

This gives rise to hybrid I/O automata (HIOA) [Lynch, Segala,
Vaandrager 2002]

We defined composition of compatible HIOA 𝒜 = 𝒜"||𝒜#

Plant

̇𝑥" = 𝑓" 𝑥", 𝑦#
𝑦" = 𝑥"

Controller

𝑥# = 𝑔 𝑥#, 𝑦"
𝑦# = 𝑥#

𝑦"𝑦#

Composition of Hybrid Automata

The parallel composition operation on automata enable us to construct
larger and more complex models from simpler automata modules

𝒜1 to 𝒜2 are compatible if X1 ∩	X2 =	H1 ∩	A2 =	H2 ∩	A1 =	∅

Variable names are disjoint; Action names of one are disjoint with the
internal action names of the other

Lecture Slides by Sayan Mitra mitras@illinois.edu

Composition
• For compatible 𝒜1 and 𝒜2 their composition 𝒜1 || 𝒜2 is the structure 𝓐= 𝑉, Θ, 𝐴, 𝒟, 𝒯
• Variables 𝑉 = 𝑋 ∪ 𝑌 ∪ 𝑈

• 𝑋 = 𝑋1 ∪ 𝑋2, Y = 𝑌1 ∪ 𝑌2 ,𝑈 = 𝑈1 ∪ 𝑈# ∖ 𝑌

• Θ = 𝒙 ∈ 𝑣𝑎𝑙(𝑋) ∀ 𝑖 ∈ 1,2 : 𝒙⌈𝑋𝒊 ∈ Θ𝑖}

• Actions 𝐴 = 𝐻 ∪ 𝑂 ∪ 𝐼
• 𝐻 = 𝐻1 ∪ 𝐻2, O = 𝑂1 ∪ 𝑂2 ,I = 𝐼1 ∪ 𝐼# ∖ 𝑂,

• 𝒙, 𝑎, 𝒙′ ∈ 𝒟 iff for 𝑖 ∈ {1,2}
• 𝑎 ∈ 𝐴� and (𝒙⌈𝑋�, 𝑎, 𝒙<⌈𝑋�) ∈ 𝒟�
• 𝑎 ∉ 𝐴� 𝒙⌈𝑋� = 𝒙⌈𝑋�

• 𝒯: set of trajectories for V
• 𝜏 ∈ 𝒯 iff ∀ 𝑖 ∈ 1,2 ,		𝜏 ↓ 𝑉� ∈ 𝒯i

𝒜#

𝑥̇" = 𝑓(𝑥", 𝑢#)

e

f

𝒜t

𝒜�

a1

a1

a1

a1

u2

e

f

u2

Modeling a Simple Failure Detector System

• Periodic send
• Channel
• Timeout

Lecture Slides by Sayan Mitra mitras@illinois.edu

Send Channel Failure
Detector

Send(m) recv(m)

fail detect

Composition
• For compatible 𝒜1 and 𝒜2 their composition 𝒜1 || 𝒜2 is the structure 𝓐=

𝑋, 𝑄, Θ, 𝐸, 𝐻, 𝒟, 𝒯
• 𝑋 = 𝑋1 ∪ 𝑋2 (disjoint union)

• 𝑄 ⊆ 𝑣𝑎𝑙(𝑋)
• Θ = 𝒙 ∈ 𝑄 ∀ 𝑖 ∈ 1,2 : 𝒙. 𝑋𝑖 ∈ Θ𝑖}
• H = H1 ∪	H2 (disjoint	union)	
• E	=	E1 ∪	E2		and		A= E ∪	H
• 𝒙, 𝑎, 𝒙′ ∈ 𝒟 iff

• 𝑎 ∈ 𝐻1 and (𝒙. 𝑋1, 𝑎, 𝒙′. 𝑋1) ∈ 𝒟1 and 𝒙. 𝑋2 = 𝒙. 𝑋2
• 𝑎 ∈ 𝐻2 and (𝒙. 𝑋2, 𝑎, 𝒙′. 𝑋2) ∈ 𝒟2 and 𝒙. 𝑋1 = 𝒙. 𝑋1
• Else, (𝒙. 𝑋1, 𝑎, 𝒙′. 𝑋1) ∈ 𝒟1 and (𝒙. 𝑋2, 𝑎, 𝒙′. 𝑋2) ∈ 𝒟2

• 𝒯: set of trajectories for X
• 𝜏 ∈ 𝒯 iff ∀ 𝑖 ∈ 1,2 ,		𝜏.Xi	∈ 𝒯i

Theorem	.	𝓐 is also a hybrid automaton.

Lecture Slides by Sayan Mitra mitras@illinois.edu

Example: Send || TimedChannel
Automaton PeriodicSend(u, M)

variables: internal clock: Reals := 0

actions: external send(m:M)

transitions:

send(m)

pre clock = u

eff clock := 0

trajectories:

evolve d(clock) = 1

stop when clock=u

Automaton Channel(b,M)
variables: internal

queue: Queue[M,Reals] := {}
clock1: Reals := 0

actions: external send(m:M), receive(m:M)
transitions:

send(m)
pre true
eff queue := append(<m, clock1+b>, queue)
receive(m)
pre head(queue)[1]	=	m
eff queue := queue.tail

trajectories:
evolve d(clock1) = 1
stop when ∃	m,	d,	<m,d>	∈	queue	

/\ clock=d Lecture Slides by Sayan Mitra mitras@illinois.edu

Composed Automaton
Automaton SC(b,u)

variables: internal queue: Queue[M,Reals] := {}
clock_s, clock_c: Reals := 0

actions: external send(m:M), receive(m:M)
transitions:

send(m)
pre clock_s = u
eff queue := append(<m, clock_c+b>, queue); clock_s := 0
receive(m)
pre head(queue)[1]	=	m
eff queue := queue.tail

trajectories:
evolve d(clock_c) = 1; d(clock_s) = 1
stop when

(∃	m,	d,	<m,d>	∈	queue	/\ clock_c=d)
\/ (clock_s=u) Lecture Slides by Sayan Mitra mitras@illinois.edu

Modeling a Simple Failure Detector System
• Periodic send || Channel
• Periodic send || Channel || Timeout

Lecture Slides by Sayan Mitra mitras@illinois.edu

Send Channel Failure
Detector

Send(m) recv(m)

fail detect

Time bounded channel & Simple Failure
Detector

Automaton Timeout(u,M)
variables: internal suspected: Boolean := F,

clock: Reals := 0
actions: external receive(m:M), timeout
transitions:

receive(m)
pre true
eff clock := 0; suspected := false;
timeout
pre ~suspected /\ clock = u
eff suspected := true

trajectories:
evolve d(clock) = 1
stop when clock	=	u	/\ ~suspected

Lecture Slides by Sayan Mitra mitras@illinois.edu

General composition

Lecture Slides by Sayan Mitra mitras@illinois.edu

𝒜"
𝑥",𝑚𝑜𝑑𝑒"

𝒜#
𝑥#,𝑚𝑜𝑑𝑒#

𝑎"

𝑣𝑎𝑟"

𝑎#

𝑢" 𝑖𝑛𝑝𝑢𝑡"

𝒜#||𝒜"
𝑥", 𝑥#,

𝑚𝑜𝑑𝑒",, 𝑚𝑜𝑑𝑒#

𝑦#

𝑣𝑎𝑟", 𝑦#𝑢", 𝑢#

𝑎", 𝑎#
𝑖𝑛𝑝𝑢𝑡"

Some properties about composed automata

• Let 𝓐= 𝒜1 || 𝒜2 and let α be an execution fragment of 𝓐.
• Then αi = α|(Ai, Xi) is an execution fragment of 𝒜i

• α is time-bounded iff both α1 and α2 are time-bounded
• α is admissible iff both α1 and α2 are admissible
• α is closed iff both α1 and α2 are closed
• α is non-Zeno iff both α1 and α2 are non-Zeno
• α is an execution iff both α1 and α2 are executions

• Traces𝓐 = 𝜷 𝜷| Ei ϵ Traces 𝒜i }
• See examples in the TIOA monograph

Lecture Slides by Sayan Mitra mitras@illinois.edu

A trace theorem restriction from composition
of I/O automata
Theorem 5.5 (from Theory of Timed I/O Automata by Lynch et. al.)
Suppose 𝒜 = 𝒜1||𝒜2 and let E be the set of input/output actions of A.
Then Traces𝒜 is exactly the set of (E, ∅)-sequences whose restrictions
to 𝒜1 and 𝒜2 are traces of 𝒜1 and 𝒜2 , respectively. That is,

Traces𝒜 = {β | β is an (E, ∅)-sequence and 𝛽 𝐸𝒜1
∅ ∈ Traces𝒜� , i ∈ {1, 2}}.

Substitutivity

Theorem 1. Suppose 𝒜1 , 𝒜2 and ℬ have the same external
interface and 𝒜1 , 𝒜2 are compatible with ℬ. If 𝒜" ≼𝒜2 then
𝒜1|| ℬ ≼𝒜2 || ℬ

Lecture Slides by Sayan Mitra mitras@illinois.edu

Substutivity

Theorem 2. Suppose 𝒜1 𝒜2 ℬ1 and ℬ2 are HAs and 𝒜1 𝒜2 have the same
external actions and ℬ1 ℬ2 have the same external actions and 𝒜1 𝒜2 is
compatible with each of ℬ1 and ℬ2 .

If 𝒜1 ≼ 𝒜# and ℬ"≼ ℬ2 then 𝒜1 || ℬ1 ≼ 𝒜2||ℬ2 .

• Proof. 𝒜1 || ℬ1 ≼ 𝒜2||ℬ1
𝒜2||ℬ1 ≼ 𝒜2||ℬ2
By transitivity of implementation relation
𝒜1 || ℬ1 ≼ 𝒜2||ℬ2

Lecture Slides by Sayan Mitra mitras@illinois.edu

A stronger substitutivity result

Theorem 3. 𝒜1 || ℬ2 ≼ 𝒜2||ℬ2 and ℬ1 ≼ ℬ2 then 𝒜1 || ℬ1 ≼ 𝒜2||ℬ2.

Lecture Slides by Sayan Mitra mitras@illinois.edu

A stronger substitutivity result

Theorem 3. 𝒜1 || ℬ# ≼ 𝒜2||ℬ2 and
ℬ1 ≼ ℬ2 then 𝒜1 || ℬ1 ≼ 𝒜2||ℬ2.

Proof. Let β ∈ Traces𝒜1 || ℬ".
By Theorem 5.5 (of LVS TIOA), 𝛽 𝐸𝒜1

∅ ∈ 𝑇𝑟𝑎𝑐𝑒𝑠𝒜1
and 𝛽 𝐸ℬ" ∅ ∈ 𝑇𝑟𝑎𝑐𝑒𝑠ℬ".

Since ℬ1 ≼ ℬ#

𝛽 𝐸ℬI ∅ ∈ 𝑇𝑟𝑎𝑐𝑒𝑠ℬI

By Theorem 5.5 , β ∈ Traces𝒜1 || ℬI
Since 𝒜1 || ℬ# ≼ 𝒜2||ℬ2 by assumption, β ∈ Traces𝒜2 || ℬI

Lecture Slides by Sayan Mitra mitras@illinois.edu

Counter-example guided
abstraction-refinement

Counterexample guided abstraction
refinement (CEGAR)
• A general algorithmic framework for automatically constructing and

verifying property-specific abstractions [Clarke:2000]
• CEGAR has been applied to discrete automata, software, and hybrid

systems [Holzman 00,Ball 01, Alur 2006,Clarke 2003, Fehnker2005,
Prabhakar 15, Roohi 17]
• We will discuss the basic idea of the CEGAR and the key design

choices, and their implications.

Start with coarse
abstraction B0

Check Bi
satisfies S ?

b counter-
example for

A?

Refine Bi to get Bi+1

b = q0 q1 q2 … qn

A is
safe

Yes

No

A
unsafe

Yes

No

Idea of CEGAR

Key design choices

• Space of the abstract automata (finite, timed, linear)
• Model checker for abstract automaton
• Counter-example validation procedure
• Refinement strategy

Θ

𝑈𝑛𝑠𝑎𝑓𝑒

(0,0)

𝑞e

Θ

𝑈𝑛𝑠𝑎𝑓𝑒

𝑞e

(0,0)

Θ

𝑈𝑛𝑠𝑎𝑓𝑒

𝑞e

(0,0)

𝑞"

𝑞�

𝑞¯

𝑞# 𝑞t
𝑆� = 𝑃𝑟𝑒1 𝑆¯ ∩ 𝑅²" 𝑞� ≠ ∅
𝑆t = 𝑃𝑟𝑒1(𝑆�) ∩ 𝑅²" 𝑞t ≠ ∅
𝑆# = 𝑃𝑟𝑒1 𝑆t ∩ 𝑅²" 𝑞# ≠ ∅
𝑆" = 𝑃𝑟𝑒1 𝑆# ∩ 𝑅²" 𝑞" = ∅

