ECE584 L2
Discrete models, reachability,

and Invariance

August 28t 2025, ECEB 3013
Sayan Mitra
CSL 266

mitras@illinois.edu

@Mitrasayn

mailto:mitras@illinois.edu

Announcements

* Class Campuswire created:
https://campuswire.com/c/GO0D38569B/feed

* Use to create discuss projects

* We may use it for announcements
e Main source of information will be website

* Links to notable past projects restored (mostly)
* https://mitras.ece.illinois.edu/ECE584/project.html

 HW1 out tomorrow due in 2 weeks

https://campuswire.com/c/G0D38569B/feed
https://mitras.ece.illinois.edu/ECE584/project.html
https://mitras.ece.illinois.edu/ECE584/project.html

Recall automata and requirements

Automaton A = (X,0,4,D)
Liveness/Progress

All executions of Collatz (with ® = Z*)
eventually enter reaches (x — 1)

Do all executions of Lorentz converge?

Safety/Invariance

All executions of Collatz with x, € [1,200]
stays inside x; < 10,000

Safety/Invariance. Do they stay bounded?

Example 3: Dijkstra’s Token Ring algorithm

A mutual exclusion algorithm is a distributed algorithm that assures p. b,
that a collection of participating processes can (1) always eventually / \
access a shared resource (e.g., a printer) and (2) no two processes ever

Legal

configuration ////
N processes with ids 0, 1, ..., N-1

Unidirectional: each j>0 process P, reads the state of only the e P,
predecessor P, ;; Po reads only Py ; \

Legal configuration = exactly one “token” in the ring and this token ILlegal s

circulates in the ring \
Even if multiple tokens arise because of faults, if the algorithm e

continues to work correctly, then eventually there is a single token; this

access the resource simultaneously.

A token-based mutual exclusion algorithm uses a “token” to provide
access to the shared resource

is the self stabilizing property Self-stabilizing Systems in Spite of Distributed Control, CACM, 1974.

Dijkstra’s Algorithm [74]

State of each process j is a single integer variable x|j] € [K], where K> N

A process can update its state only when it has the token which is determined by its
state and its neighbor’s state

hasToken(x,j) = (=0Ax[jl=x[N—-1)D Vv ([{ # 0Ax|j] # x[j — 1])

Update(i: [N]): // transition rule
If hasToken(x,1)
If i = 0 then x[0] := x[0] + 1 mod K
else x[j] := x[j — 1]

Sample executions: from a legal state (single token)

CICPGD G

Execution from an illegal state

.
& Legal in single “step”
(3) (2)
(2)— (2)

% % Legal in two steps
© B (3
© ©
(2—(2) (D

Synchronous model: All processes update
simultaneously

def has_token(x, i, N):
"""Return True if process i has the token."""
ifi==0:
return x[0] == x[N - 1]
else:
return x[i] != x[i - 1]

def simulate(N, K, T, delta_t):
x = [0]*N

while t<=T:
x_old = x.copy() // Update

foriinrange(N):
if has_token(x_old, i, N):
ifi==0:
X[i] = (x_old[0] + 1) % K
else:
x[i] = x_old[i- 1]

Synchronous Token Ring

20, K=5)

Token Possession Over Time (N

19

18 -

17

16 -

15

14 -

13 -

12 A

— O O C0
—

al ssa204d

7.5 10.0 12.5 15.0 17.5 20.0
Time

5.0

2.5

0.0

Asynchronous Nondeterministic Automaton

We will write automata precisely using this style

automaton DijkstraTR(N:N, K: N), where K >N | Anautomaton A is a 4-tuple (V, 0, 4, D) where

C V=)
variables * type(x) = [N] - [K]
x:[[N] -> [K]] « State space = [K]"
° @ — e
actions « A = {update(0),update(1), ...,update(N — 1)}

update(i:[N]) e D= {(x’ update(i), x')|ielN]A hasToken(x, i)

— Ifi=0thenx'[0] =x[N—-1]+1% K

transitions — 1fi # 0then x'[i] = x[i — 1]}
Update(p=0)
Pre has_token(i) and i== This is a nondeterministic automaton.
EFf x[i] = (X[i] + 1) % K
Update(p>0)

All processes with tokens could perform a

Pre has_token(i) and i == transition

Eff x[i] = x[i-1]

3 382

Dijkstra Synchronous Token Ring

ate
— \)Od

322 — update —— 222

100 — update —— 110

Updy te

upda®

~

Nondeterministic execution

Dijkstra Asynchronous Token Ring

mov2
N
110 < 5.0
N 2 2
S 2. Y B
(@}
& \O4
o
290 100 i
3
Y
)
%)
R 000
O
\ o
((\
320 003
R~ ~
m,)
33 033

\mov2\333_____m0\10-""

Internal and External Nondeterminism

A is deterministic if |®| = 1 and there is at most one next state v’ from any state v
enabled(v) = {a € A| 3v' v -, v'}isthe set of action that can occur at v.

If |enabled(v)| > 1 the automaton has external nondeterminism, i.e., there is a choice in which
action should be performed at each state (e.g., which process updates)

post(v,a) = {v' |v -, v'}isthe set of next states of v after performing a

If |post(v, a)| > 1the automaton has internal nondeterminism, i.e., the choice of the action
does not completely resolve uncertainty (e.g., coin = choose {0,1})

Nondeterminism
* Multiple initial states
* External nondeterminism: Multiple actions enabled from the same state

* Internal nondeterminism: Multiple post-states from the same state and action

Executions, Reachability, and Invariants

Automaton A = (X, 0,4, D)
An executions models a particular behavior of the automaton A

An execution of A is an alternating (possibly infinite) sequence of states
and actions &« = uga;u4{a,us ...such that:

1. uy €0

2. Viinthesequence, u; =g, Ujyq

For a finite execution, @ = uga,u,a,u; the last state a. [state = u;
and the length of the execution is 3.

In general, how many executions does an A have?

Reachable states and invariants

A state u is reachable if there exists an execution a such that a. [state = u

Reach_4(0, K): set of states reachable from 0 by automaton A in at most K steps

Reach_,(0): set of states reachable from © by automaton A (in any finite number
of steps)

We write Reach_4 if the initial state is clear from context
Reach ; “Everything that can happen”
(Reach)¢ “Things that never happen”

Reachability as graph search

Q1. Given finite state A, is a state v € val(V) reachable?

Define a graph G ; = (Ver, Edg) where Symbolic Model Checking: 102° States
.« Ver = val(V) and Beyond
. Edg — {(u,u’)la a€Au -4 u’} J. R. Burch E. M. Clarke K. L. McMillan*

School of Computer Science
Carnegie Mellon University

Q2. Does there exist apathin G 4 from any statein ® tou ?

D. L. Dill L. J. Hwang
Perform DFS/BFS on qu Stanford University
This called explicit state model checking because each
Abstract
IndIVIdual State IS Stored In memo ry Many different methods have been devised for automatically veri-

fying finite state systems by examining state-graph models of system
W k |. f f . d d |. behavior. These methods all depend on decision procedures that ex-
OrKs on y or finite state automata an oes not scale to plicitly represent the state space using a list or a table that grows in

proportion to the number of states. We describe a general method that

ve I‘y l.a I‘ge state SpaCGS represents the state space symbolically instead of explicitly. The gener-

Perspectives on scalability

data scientist algorithmist verification engineer

Sets of states are symbolic properties or predicates

A set of states defines a property or a predicate and vice versa

For example: (x — 5),(x — 6), ... defines the predicate x > 5

A predicate over a set of variable X is a Boolean-valued formula involving the variables in X.
« ¢1:x[1] =1

* ¢,:Vi € [N],x[i] =0

A valuation u satisfies a predicate ¢ if substituting the values of the variables in uin ¢ makes it evaluate to
True. We this as write u= ¢

Examplessu ={(x~» (0~ 0,1~0,..));v=(x»(0~1,1~0,2~0,...))
*uUkE ¢, (WK P),VE Piandv ¥ ¢,

We will find it convenient to represent state sets (e.g., Reach 4 and 0) by predicates
[[@]] = {w:Val(V) | u = ¢} setof all states that satisfy ¢
e [[¢,]] ={(x > (0~ 0,1-0,2~0,3>0,4 0,5 0))}

* ® € val(x) isthe set of initial states of the automaton; often specified by a predicate over X

Invariance

An invariant is a set of states (or a property) I such that Reach 4 €
I,i.e.,aproperty that always holds

Invariants capture conservation laws

Invariants
All executions of Collatz with x, € [1,200] stays inside x; < 10,000

“Exactly one process has a token”
I;: |{i € [N] |hasToken(x,i)}| =1

val(X): All states e.g. I3

“At least one process has a token”

I.1:|{i € [N] |hasToken(x,i)}| =1 Invariant e.g. I,

Reach ,(0)

“All processes have values at most K-1”
I;:Vi € [N],x[i]<K-1

“Car always stops at stop sign”

“Drone does not deviate more that 5m from ref path”

Summary

* Invariants over-approximate reachable states

* Given an automaton A = (X, 0, 4, D) and a candidate invariant I <
Val(X),to checkthat Reach 4 € I.

e A sufficient condition is to check that I satisfies start condition and
transition condition of Theorem 7.1

 Such aninvariant is called an inductive invariant
« Use proof failure to get I' which may be a stronger invariant, i.e., I' = [

Assignments

* Read. Modeling computation: Chapter 2 of

CPSBook, first part of Chapter 7, and section on
SAT/SMT

* Form team (optional*) and go through Project
Jumpstart exercise

* Next: Satisfiability

	Slide 1: ECE584 L2 Discrete models, reachability, and Invariance
	Slide 2: Announcements
	Slide 3: Recall automata and requirements
	Slide 4: Example 3: Dijkstra’s Token Ring algorithm
	Slide 5: Dijkstra’s Algorithm [‘74]
	Slide 6: Sample executions: from a legal state (single token)
	Slide 7: Execution from an illegal state
	Slide 8: Synchronous model: All processes update simultaneously
	Slide 10: Synchronous Token Ring
	Slide 11: Asynchronous Nondeterministic Automaton
	Slide 12
	Slide 13: Nondeterministic execution
	Slide 14: Internal and External Nondeterminism
	Slide 15: Executions, Reachability, and Invariants
	Slide 16: Reachable states and invariants
	Slide 17: Reachability as graph search
	Slide 18: Perspectives on scalability
	Slide 19: Sets of states are symbolic properties or predicates
	Slide 20: Invariance
	Slide 21: Invariants
	Slide 22: Summary
	Slide 23: Assignments

