
ECE584 L2
Discrete models, reachability,

and Invariance
August 28th 2025, ECEB 3013

Sayan Mitra
CSL 266

mitras@illinois.edu
@Mitrasayn

mailto:mitras@illinois.edu

Announcements

• Class Campuswire created:
https://campuswire.com/c/G0D38569B/feed
• Use to create discuss projects
• We may use it for announcements
• Main source of information will be website

• Links to notable past projects restored (mostly)
• https://mitras.ece.illinois.edu/ECE584/project.html

• HW1 out tomorrow due in 2 weeks

https://campuswire.com/c/G0D38569B/feed
https://mitras.ece.illinois.edu/ECE584/project.html
https://mitras.ece.illinois.edu/ECE584/project.html

Recall automata and requirements

Automaton 𝒜 = 〈𝑋, Θ, 𝐴, 𝒟〉

Liveness/Progress
All executions of Collatz (with Θ ≡ ℤ+)
eventually enter reaches ⟨𝑥 ↦ 1⟩

Do all executions of Lorentz converge?

Safety/Invariance
All executions of Collatz with 𝑥0 ∈ [1,200]
stays inside 𝑥𝑖 ≤ 10,000

Safety/Invariance. Do they stay bounded?

Example 3: Dijkstra’s Token Ring algorithm
A mutual exclusion algorithm is a distributed algorithm that assures

that a collection of participating processes can (1) always eventually

access a shared resource (e.g., a printer) and (2) no two processes ever

access the resource simultaneously.

A token-based mutual exclusion algorithm uses a ”token” to provide

access to the shared resource

N processes with ids 0, 1, …, N-1

Unidirectional: each j>0 process Pj reads the state of only the

predecessor Pj-1; P0 reads only PN-1

Legal configuration = exactly one “token” in the ring and this token

circulates in the ring

Even if multiple tokens arise because of faults, if the algorithm

continues to work correctly, then eventually there is a single token; this

is the self stabilizing property Self-stabilizing Systems in Spite of Distributed Control, CACM, 1974.

Legal
configuration

Illegal

Dijkstra’s Algorithm [‘74]
State of each process j is a single integer variable 𝑥 𝑗  [𝐾], where K > N

A process can update its state only when it has the token which is determined by its
state and its neighbor’s state

ℎ𝑎𝑠𝑇𝑜𝑘𝑒𝑛 𝑥, 𝑗 ≡ 𝑗 = 0 ∧ 𝑥 𝑗 = 𝑥 𝑁 − 1 ∨ (𝑗 ≠ 0 ∧ 𝑥 𝑗 ≠ 𝑥[𝑗 − 1])

Update i: [N] : // transition rule

 If ℎ𝑎𝑠𝑇𝑜𝑘𝑒𝑛 𝑥, 𝑖

 If 𝑖 = 0 𝐭𝐡𝐞𝐧 𝑥[0] ∶= 𝑥[0] + 1 𝑚𝑜𝑑 𝐾

 else 𝑥[𝑗] ∶= 𝑥[𝑗 − 1]

Sample executions: from a legal state (single token)

…

…
… …

Execution from an illegal state

Legal in single “step”

Legal in two steps

Synchronous model: All processes update
simultaneously
def has_token(x, i, N):
"""Return True if process i has the token."""
if i == 0:
 return x[0] == x[N - 1]
else:
 return x[i] != x[i - 1]

def simulate(N, K, T, delta_t):
x = [0]*N

while t <= T:
 x_old = x.copy() // Update

 for i in range(N):
 if has_token(x_old, i, N):
 if i == 0:
 x[i] = (x_old[0] + 1) % K
 else:
 x[i] = x_old[i - 1]

Synchronous Token Ring

Asynchronous Nondeterministic Automaton
We will write automata precisely using this style

automaton DijkstraTR(N:ℕ, K: ℕ), where K > N

 variables
 x:[[N] -> [K]]

 actions
 update(i:[N])

 transitions
 Update(p=0)
 Pre has_token(i) and i== p
 Eff x[i] = (x[i] + 1) % K
 Update(p>0)
 Pre has_token(i) and i == p
 Eff x[i] = x[i-1]

An automaton 𝒜 is a 4-tuple 〈𝑉, Θ, 𝐴, 𝒟〉 where
• 𝑉 = {𝑥}
• 𝑡𝑦𝑝𝑒 𝑥 = 𝑁 → [𝐾]

• State space ≡ 𝐾 𝑁

• Θ = ⋯

• 𝐴 = {𝑢𝑝𝑑𝑎𝑡𝑒 0 , 𝑢𝑝𝑑𝑎𝑡𝑒 1 , … , 𝑢𝑝𝑑𝑎𝑡𝑒(𝑁 − 1)}
• 𝒟 = 𝒙, 𝑢𝑝𝑑𝑎𝑡𝑒(𝑖), 𝒙′ 𝑖 ∈ 𝑁 ∧ ℎ𝑎𝑠𝑇𝑜𝑘𝑒𝑛(𝒙, 𝑖)

– If 𝑖 = 0 then 𝒙′ 0 = 𝒙 𝑁 − 1 + 1 % 𝐾
– If 𝑖 ≠ 0 then 𝒙′ 𝑖 = 𝒙 𝑖 − 1 }

This is a nondeterministic automaton.

All processes with tokens could perform a
transition

Nondeterministic execution

Internal and External Nondeterminism
𝒜 is deterministic if Θ = 1 and there is at most one next state 𝒗′ from any state 𝒗

𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝒗 = 𝑎 ∈ 𝐴 ∃𝒗′ 𝒗 →𝑎 𝒗′} is the set of action that can occur at 𝒗.

If 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝒗 > 1 the automaton has external nondeterminism, i.e., there is a choice in which
action should be performed at each state (e.g., which process updates)

𝑝𝑜𝑠𝑡 𝒗, 𝒂 = 𝒗′ 𝒗 →𝑎 𝒗′} is the set of next states of 𝒗 after performing 𝒂

If 𝑝𝑜𝑠𝑡 𝒗, 𝒂 > 1 the automaton has internal nondeterminism, i.e., the choice of the action
does not completely resolve uncertainty (e.g., 𝑐𝑜𝑖𝑛 = 𝒄𝒉𝒐𝒐𝒔𝒆 {0,1})

Nondeterminism

• Multiple initial states

• External nondeterminism: Multiple actions enabled from the same state

• Internal nondeterminism: Multiple post-states from the same state and action

Executions, Reachability, and Invariants
Automaton 𝒜 = 〈𝑋, Θ, 𝐴, 𝒟〉

An executions models a particular behavior of the automaton 𝒜

An execution of 𝒜 is an alternating (possibly infinite) sequence of states
and actions 𝛼 = 𝑢0𝑎1𝑢1𝑎2𝑢3 …such that:

1. 𝑢0 ∈ Θ

2. ∀ 𝑖 in the sequence, 𝑢𝑖 →𝑎𝑖+1
𝑢𝑖+1

For a finite execution, 𝛼 = 𝑢0𝑎1𝑢1𝑎2𝑢3 the last state 𝛼. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝑢3
and the length of the execution is 3.

In general, how many executions does an 𝒜 have?

Reachable states and invariants
A state 𝒖 is reachable if there exists an execution 𝛼 such that 𝛼. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝒖

𝑅𝑒𝑎𝑐ℎ𝒜 Θ, 𝐾 : set of states reachable from Θ by automaton 𝒜 in at most K steps

𝑅𝑒𝑎𝑐ℎ𝒜 Θ : set of states reachable from Θ by automaton 𝒜 (in any finite number
of steps)

We write 𝑅𝑒𝑎𝑐ℎ𝒜 if the initial state is clear from context

𝑅𝑒𝑎𝑐ℎ𝒜 “Everything that can happen”

𝑅𝑒𝑎𝑐ℎ𝒜
𝑐 “Things that never happen”

Reachability as graph search

• Q1. Given finite state 𝒜, is a state 𝒗 ∈ 𝑣𝑎𝑙 𝑉 reachable?

• Define a graph 𝐺𝒜 = 〈𝑉𝑒𝑟, 𝐸𝑑𝑔〉 where

• 𝑉𝑒𝑟 = 𝑣𝑎𝑙 𝑉

• 𝐸𝑑𝑔 = 𝑢, 𝑢′ ∃ 𝑎 ∈ 𝐴, 𝑢 →𝑎 𝑢′}

• Q2. Does there exist a path in 𝐺𝒜 from any state in Θ to 𝑢 ?

• Perform DFS/BFS on 𝐺𝒜

• This called explicit state model checking because each
individual state is stored in memory

• Works only for finite state automata and does not scale to
very large state spaces

Perspectives on scalability

data scientist

Solution
does not
scale

algorithmist

This is
perfect!

verification engineer

Yay,
decidable!

O(n) O(n) O(2n)

Sets of states are symbolic properties or predicates
A set of states defines a property or a predicate and vice versa

For example: 𝑥 ↦ 5 , 𝑥 ↦ 6 , … defines the predicate 𝑥 ≥ 5

A predicate over a set of variable X is a Boolean-valued formula involving the variables in X.

• 𝜙1: 𝑥 1 = 1

• 𝜙2: ∀𝑖 ∈ [𝑁], 𝑥 𝑖 = 0

A valuation u satisfies a predicate 𝝓 if substituting the values of the variables in u in 𝜙 makes it evaluate to
True. We this as write u⊨ 𝝓

Examples: 𝒖 = 𝑥 ↦ 0 ↦ 0, 1 ↦ 0, … ; 𝒗 = 𝑥 ↦ 0 ↦ 1, 1 ↦ 0, 2 ↦ 0, …

• 𝒖 ⊨ 𝜙2, (𝒖 ⊭ 𝜙1) , 𝒗 ⊨ 𝝓𝟏 and 𝒗 ⊭ 𝝓𝟐

We will find it convenient to represent state sets (e.g., 𝑅𝑒𝑎𝑐ℎ𝒜 and Θ) by predicates

𝝓 = 𝒖:Val(V) 𝒖 ⊨ 𝜙} set of all states that satisfy 𝝓

• 𝜙2 = {〈𝑥 ↦ 0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0 〉}

• Θ ⊆ 𝑣𝑎𝑙(𝑥) is the set of initial states of the automaton; often specified by a predicate over X

Invariance

An invariant is a set of states (or a property) 𝐼 such that 𝑅𝑒𝑎𝑐ℎ𝒜 ⊆
𝐼, i.e., a property that always holds

Invariants capture conservation laws

val(X): All states e.g. 𝐼3

All executions of Collatz with 𝑥0 ∈ [1,200] stays inside 𝑥𝑖 ≤ 10,000

“Exactly one process has a token”
𝐼1: 𝑖 ∈ 𝑁 ℎ𝑎𝑠𝑇𝑜𝑘𝑒𝑛 𝒙, 𝑖 } ≥ 1

“At least one process has a token”
𝐼≥1: 𝑖 ∈ 𝑁 ℎ𝑎𝑠𝑇𝑜𝑘𝑒𝑛 𝒙, 𝑖 } ≥ 1

“All processes have values at most K-1”
𝐼3: ∀𝑖 ∈ 𝑁 , 𝑥 𝑖 ≤ 𝐾 − 1

“Car always stops at stop sign”
“Drone does not deviate more that 5m from ref path”

Invariant e.g. 𝐼≥1

𝑅𝑒𝑎𝑐ℎ𝒜(Θ)

𝚯

Invariants

Summary

• Invariants over-approximate reachable states

• Given an automaton 𝒜 = 〈𝑋, Θ, 𝐴, 𝒟〉 and a candidate invariant 𝐼 ⊆
𝑉𝑎𝑙 𝑋 , to check that 𝑅𝑒𝑎𝑐ℎ𝒜 ⊆ 𝐼.
• A sufficient condition is to check that 𝐼 satisfies start condition and

transition condition of Theorem 7.1
• Such an invariant is called an inductive invariant
• Use proof failure to get 𝐼′ which may be a stronger invariant, i.e., 𝐼′ ⇒ 𝐼

Assignments
• Read. Modeling computation: Chapter 2 of

CPSBook, first part of Chapter 7, and section on
SAT/SMT

• Form team (optional*) and go through Project
Jumpstart exercise

• Next: Satisfiability

	Slide 1: ECE584 L2 Discrete models, reachability, and Invariance
	Slide 2: Announcements
	Slide 3: Recall automata and requirements
	Slide 4: Example 3: Dijkstra’s Token Ring algorithm
	Slide 5: Dijkstra’s Algorithm [‘74]
	Slide 6: Sample executions: from a legal state (single token)
	Slide 7: Execution from an illegal state
	Slide 8: Synchronous model: All processes update simultaneously
	Slide 10: Synchronous Token Ring
	Slide 11: Asynchronous Nondeterministic Automaton
	Slide 12
	Slide 13: Nondeterministic execution
	Slide 14: Internal and External Nondeterminism
	Slide 15: Executions, Reachability, and Invariants
	Slide 16: Reachable states and invariants
	Slide 17: Reachability as graph search
	Slide 18: Perspectives on scalability
	Slide 19: Sets of states are symbolic properties or predicates
	Slide 20: Invariance
	Slide 21: Invariants
	Slide 22: Summary
	Slide 23: Assignments

