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Announcements

• Class Campuswire created: 
https://campuswire.com/c/G0D38569B/feed
• Use to create discuss projects
• We may use it for announcements
• Main source of information will be website

• Links to notable past projects restored (mostly)
• https://mitras.ece.illinois.edu/ECE584/project.html

• HW1 out tomorrow due in 2 weeks

https://campuswire.com/c/G0D38569B/feed
https://mitras.ece.illinois.edu/ECE584/project.html
https://mitras.ece.illinois.edu/ECE584/project.html


Recall automata and requirements

Automaton 𝒜 = 〈𝑋, Θ, 𝐴, 𝒟〉

Liveness/Progress
All executions of Collatz (with Θ ≡ ℤ+) 
eventually enter reaches ⟨𝑥 ↦ 1⟩

Do all executions of Lorentz converge? 

Safety/Invariance
All executions of Collatz with 𝑥0 ∈ [1,200]
stays inside 𝑥𝑖 ≤ 10,000

Safety/Invariance. Do they stay bounded? 



Example 3: Dijkstra’s Token Ring algorithm
A mutual exclusion algorithm is a distributed algorithm that assures 

that a collection of participating processes can (1) always eventually 

access a shared resource (e.g., a printer) and (2) no two processes ever 

access the resource simultaneously. 

A token-based mutual exclusion algorithm uses a ”token” to provide 

access to the shared resource

N processes with ids 0, 1, …, N-1

Unidirectional: each j>0 process Pj reads the state of only the 

predecessor Pj-1; P0 reads only PN-1

Legal configuration = exactly one “token” in the ring and this token 

circulates in the ring

Even if multiple tokens arise because of faults, if the algorithm 

continues to work correctly, then eventually there is a single token; this 

is the self stabilizing property Self-stabilizing Systems in Spite of Distributed Control, CACM, 1974.

Legal 
configuration

Illegal



Dijkstra’s Algorithm [‘74]
State of each process j is a single integer variable 𝑥 𝑗  [𝐾], where K > N

A process can update its state only when it has the token which is determined by its 
state and its neighbor’s state

ℎ𝑎𝑠𝑇𝑜𝑘𝑒𝑛 𝑥, 𝑗 ≡ 𝑗 = 0 ∧ 𝑥 𝑗 = 𝑥 𝑁 − 1 ∨ (𝑗 ≠ 0 ∧ 𝑥 𝑗 ≠ 𝑥[𝑗 − 1])

Update i: [N] : // transition rule

 If ℎ𝑎𝑠𝑇𝑜𝑘𝑒𝑛 𝑥, 𝑖  

    If 𝑖 = 0 𝐭𝐡𝐞𝐧 𝑥[0] ∶=  𝑥[0]  +  1 𝑚𝑜𝑑 𝐾

        else 𝑥[𝑗] ∶=  𝑥[𝑗 − 1] 



Sample executions: from a legal state (single token)

…

…
… …



Execution from an illegal state

Legal in single “step”

Legal in two steps



Synchronous model: All processes update 
simultaneously
def has_token(x, i, N):
"""Return True if process i has the token."""
if i == 0:
   return x[0] == x[N - 1]
else:
   return x[i] != x[i - 1]

def simulate(N, K, T, delta_t):
x = [0]*N

while t <= T:
   x_old = x.copy() // Update

   for i in range(N):
      if has_token(x_old, i, N):
         if i == 0:
            x[i] = (x_old[0] + 1) % K
         else:
            x[i] = x_old[i - 1]



Synchronous Token Ring



Asynchronous Nondeterministic Automaton
We will write automata precisely using this style 

automaton DijkstraTR(N:ℕ, K: ℕ), where K > N

   variables
      x:[[N] -> [K]]

   actions
      update(i:[N])

   transitions
       Update(p=0)
          Pre has_token(i) and i== p        
          Eff x[i] = (x[i] + 1) %  K
       Update(p>0)
          Pre has_token(i) and i == p        
          Eff x[i] = x[i-1]

An automaton 𝒜 is a 4-tuple 〈𝑉, Θ, 𝐴, 𝒟〉 where
• 𝑉 = {𝑥} 
• 𝑡𝑦𝑝𝑒 𝑥 = 𝑁 → [𝐾]

• State space ≡ 𝐾 𝑁

• Θ = ⋯

• 𝐴 = {𝑢𝑝𝑑𝑎𝑡𝑒 0 , 𝑢𝑝𝑑𝑎𝑡𝑒 1 , … , 𝑢𝑝𝑑𝑎𝑡𝑒(𝑁 − 1)} 
• 𝒟 = 𝒙, 𝑢𝑝𝑑𝑎𝑡𝑒(𝑖), 𝒙′  𝑖 ∈ 𝑁 ∧  ℎ𝑎𝑠𝑇𝑜𝑘𝑒𝑛(𝒙, 𝑖) 

– If 𝑖 = 0 then 𝒙′ 0 = 𝒙 𝑁 − 1 + 1 % 𝐾 
– If 𝑖 ≠ 0 then 𝒙′ 𝑖 = 𝒙 𝑖 − 1 } 

This is a nondeterministic automaton. 

All processes with tokens could perform a 
transition





Nondeterministic execution 



Internal and External Nondeterminism
𝒜 is deterministic if Θ = 1 and there is at most one next state 𝒗′ from any state 𝒗

𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝒗 = 𝑎 ∈ 𝐴 ∃𝒗′ 𝒗 →𝑎 𝒗′} is the set of action that can occur at 𝒗. 

If 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝒗 > 1 the automaton has external nondeterminism, i.e., there is a choice in which 
action should be performed at each state (e.g., which process updates)

𝑝𝑜𝑠𝑡 𝒗, 𝒂 = 𝒗′ 𝒗 →𝑎 𝒗′} is the set of next states of 𝒗 after performing 𝒂

If 𝑝𝑜𝑠𝑡 𝒗, 𝒂 > 1 the automaton has internal nondeterminism, i.e., the choice of the action 
does not completely resolve uncertainty (e.g., 𝑐𝑜𝑖𝑛 =  𝒄𝒉𝒐𝒐𝒔𝒆 {0,1})

Nondeterminism

• Multiple initial states

• External nondeterminism: Multiple actions enabled from the same state

• Internal nondeterminism: Multiple post-states from the same state and action



Executions, Reachability, and Invariants 
Automaton 𝒜 = 〈𝑋, Θ, 𝐴, 𝒟〉

An executions models a particular behavior of the automaton 𝒜

An execution of 𝒜 is an alternating (possibly infinite) sequence of states 
and actions 𝛼 = 𝑢0𝑎1𝑢1𝑎2𝑢3 …such that:

1. 𝑢0 ∈ Θ

2. ∀ 𝑖 in the sequence, 𝑢𝑖 →𝑎𝑖+1
𝑢𝑖+1

For a finite execution, 𝛼 = 𝑢0𝑎1𝑢1𝑎2𝑢3 the last state 𝛼. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝑢3 
and the length of the execution is 3.

In general, how many executions does an 𝒜 have? 



Reachable states and invariants
A state 𝒖 is reachable if there exists an execution 𝛼 such that 𝛼. 𝑙𝑠𝑡𝑎𝑡𝑒 = 𝒖

𝑅𝑒𝑎𝑐ℎ𝒜 Θ, 𝐾 : set of states reachable from Θ by automaton 𝒜 in at most K steps

𝑅𝑒𝑎𝑐ℎ𝒜 Θ : set of states reachable from Θ by automaton 𝒜 (in any finite number 
of steps)

We write 𝑅𝑒𝑎𝑐ℎ𝒜  if the initial state is clear from context

𝑅𝑒𝑎𝑐ℎ𝒜  “Everything that can happen”

𝑅𝑒𝑎𝑐ℎ𝒜
𝑐  “Things that never happen”



Reachability as graph search

• Q1. Given finite state 𝒜, is a state 𝒗 ∈ 𝑣𝑎𝑙 𝑉  reachable? 

• Define a graph 𝐺𝒜 = 〈𝑉𝑒𝑟, 𝐸𝑑𝑔〉 where 

• 𝑉𝑒𝑟 = 𝑣𝑎𝑙 𝑉

• 𝐸𝑑𝑔 = 𝑢, 𝑢′ ∃ 𝑎 ∈ 𝐴, 𝑢 →𝑎 𝑢′}

• Q2. Does there exist a path in 𝐺𝒜  from any state in Θ to 𝑢 ?

• Perform DFS/BFS on 𝐺𝒜  

• This called explicit state model checking because each 
individual state is stored in memory 

• Works only for finite state automata and does not scale to 
very large state spaces



Perspectives on scalability

data scientist

Solution 
does not 
scale

algorithmist

This is 
perfect!

verification engineer

Yay, 
decidable!

O(n) O(n) O(2n)



Sets of states are symbolic properties or predicates
A set of states defines a property or a predicate and vice versa

For example: 𝑥 ↦ 5 , 𝑥 ↦ 6 , … defines the predicate 𝑥 ≥ 5

A predicate over a set of variable X is a Boolean-valued formula involving the variables in X.

• 𝜙1: 𝑥 1 = 1

• 𝜙2: ∀𝑖 ∈ [𝑁], 𝑥 𝑖 = 0

A valuation u satisfies a predicate 𝝓 if substituting the values of the variables in u in 𝜙 makes it evaluate to 
True. We this as write u⊨ 𝝓

Examples: 𝒖 = 𝑥 ↦ 0 ↦ 0, 1 ↦ 0, … ; 𝒗 = 𝑥 ↦ 0 ↦ 1, 1 ↦ 0, 2 ↦ 0, …

• 𝒖 ⊨ 𝜙2,  (𝒖 ⊭ 𝜙1) , 𝒗 ⊨ 𝝓𝟏 and 𝒗 ⊭ 𝝓𝟐

We will find it convenient to represent state sets (e.g., 𝑅𝑒𝑎𝑐ℎ𝒜  and Θ) by predicates 

𝝓 = 𝒖:Val(V) 𝒖 ⊨ 𝜙} set of all states that satisfy 𝝓

• 𝜙2 = {〈𝑥 ↦ 0 ↦ 0, 1 ↦ 0, 2 ↦ 0, 3 ↦ 0, 4 ↦ 0, 5 ↦ 0 〉}

• Θ ⊆ 𝑣𝑎𝑙(𝑥) is the set of initial states of the automaton;  often specified by a predicate over X



Invariance

An invariant is a set of states (or a property) 𝐼 such that 𝑅𝑒𝑎𝑐ℎ𝒜 ⊆
𝐼, i.e., a property that always holds

Invariants capture conservation laws 

 



val(X): All states e.g. 𝐼3 

All executions of Collatz with 𝑥0 ∈ [1,200] stays inside 𝑥𝑖 ≤ 10,000 

“Exactly one process has a token”
𝐼1: 𝑖 ∈ 𝑁  ℎ𝑎𝑠𝑇𝑜𝑘𝑒𝑛 𝒙, 𝑖 } ≥ 1

“At least one process has a token”
𝐼≥1: 𝑖 ∈ 𝑁  ℎ𝑎𝑠𝑇𝑜𝑘𝑒𝑛 𝒙, 𝑖 } ≥ 1

“All processes have values at most  K-1”
𝐼3: ∀𝑖 ∈ 𝑁 , 𝑥 𝑖 ≤ 𝐾 − 1

“Car always stops at stop sign”
“Drone does not deviate more that 5m from ref path”

Invariant e.g. 𝐼≥1

𝑅𝑒𝑎𝑐ℎ𝒜(Θ)

𝚯

Invariants



Summary

• Invariants over-approximate reachable states

• Given an automaton 𝒜 = 〈𝑋, Θ, 𝐴, 𝒟〉 and a candidate invariant  𝐼 ⊆
𝑉𝑎𝑙 𝑋 , to check that 𝑅𝑒𝑎𝑐ℎ𝒜 ⊆ 𝐼.
• A sufficient condition is to check that 𝐼 satisfies start condition and 

transition condition of Theorem 7.1 
• Such an invariant is called an inductive invariant
• Use proof failure to get 𝐼′ which may be a stronger invariant, i.e., 𝐼′ ⇒ 𝐼



Assignments
• Read. Modeling computation: Chapter 2 of 

CPSBook, first part of Chapter 7, and section on 
SAT/SMT

• Form team (optional*) and go through Project 
Jumpstart exercise

• Next: Satisfiability
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