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What is verification?

Definition. Verification is the action of demonstrating or proving 
statements to be true by means of evidence. OED

This class:

statement = formal specifications (or requirements) about learning-
enabled cyber-physical systems 

evidence = mathematical proof



Learning-enabled cyber-physical systems

A cyber-physical system is a computer system 

monitoring or controlling a physical process. 

A learning-enabled system uses machine 

learning models for perception or control

Examples: drone delivery, autonomous car, 

smart electric grid, insulin pump

The number of possible behaviors of such 

systems is usually uncountably infinite



Formal Specifications or Requirements

Requirements are statements about behaviors of a system

Drone visits waypoints while avoiding collisions

The vehicle stays within the lanes and maintains distance to 
leading car

Insulin pump maintains blood glucose level to within the 
prescribed range

Testing: evaluates requirements on a finite number of 
behaviors

Testing can show presence of bugs but not their absence ---
E. Dijkstra

Verification: aims to prove requirements over all behaviors



Failures in real world: Uber Fatality (Tempe, 2018) 

An Uber autonomous test vehicle struck and killed Elaine Herzberg 
pushing a bicycle across a dark road. 

The perception system had detected her six seconds before impact 
— but kept switching labels: first a vehicle, then a bicycle, then an 
“unknown object.” Because of this uncertainty, the system never 
triggered emergency braking. 

Uber had disabled the car’s automatic emergency braking to avoid 
“jerky” rides, leaving only the human backup driver, who was 
looking at her phone.

Without verified fail-safes and robust uncertainty handling, 
autonomy can see a hazard but still fail to act.



Failures in real world: Toyota Unintended Acceleration (2009–11)

Drivers reported sudden, uncontrollable acceleration in Toyota vehicles. 

Lawsuits and investigations revealed evidence of software flaws in the electronic throttle 
control: stack overflows, race conditions, and inadequate fail-safes. 

Hundreds of crashes and fatalities were attributed to this failure mode, and Toyota paid 
billions in settlements.

NASA’s technical team found that memory corruption could disable safety tasks, leaving 
the throttle stuck open. 



Failures in real world: Boeing 737 MAX – MCAS (2018–19) 

Boeing added the MCAS system to the 737 MAX to 
automatically push the nose down if it sensed a high angle of 
attack, preventing stalls. 

The flaw was that MCAS relied on a single angle-of-attack 
sensor. When that sensor failed, the system kept forcing the 
nose down, while the pilots, unaware of MCAS’s authority, 
fought back. 

Two crashes in Indonesia and Ethiopia killed 346 people and 
grounded the global fleet for almost two years. 

Investigators pointed not only to the sensor design but also 
to Boeing’s assumptions about pilot response times and 
training.



Successes of Verification 
Hardware verification now standard in EDA tools from Synopsys, Cadence, etc.

SLAM tool from MSR routinely used for verification of Device Drivers at 

Microsoft: 

AMAZON AWS developers write proofs using CBMC and other Automated 

reasoning tools

Goolge runs static analysis tools on their entire codebase

Formal modeling and analysis is becoming part of certification process for 

avionics (e.g., ASTREE); DO-333 supplement of DO-178C identifies aspects of 

airworthiness certification that pertains to of software using formal methods

Coverity, Galois, SRI, and others

LE-CPS, Automotive, and manufacturing ... 
Sadowski, et al. Lessons from Building Static Analysis Tools 
at Google. CACM, 18. 

Chong, et al. Code-level model checking in the software 
development workflow. ICSE, 20. 

O’Hearn. Continuous reasoning: Scaling the impact of 
formal methods. LICS ’18. 

https://www.microsoft.com/en-us/research/project/slam/
https://aws.amazon.com/blogs/security/tag/automated-reasoning/
https://cacm.acm.org/magazines/2018/4/226371-lessons-from-building-static-analysis-tools-at-google/fulltext


Testing, verification, 
and validation

Proof or Certificate that 
all behaviors of 𝑨 meets 𝑺

Counterexample 
showing 𝑨 violates 𝑆

System, Code, 
environment model 𝑨 

and specs S 

Verification: Certifies, discover edge cases & operating domains 

edge-case, improve logic, ODD
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Product 
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models



Testing, verification, 
and validation

Proof or Certificate that 
all behaviors of 𝑨 meets 𝑺

Counterexample 
showing 𝑨 violates 𝑆

System, Code, 
environment model 𝑨 

and specs S 

Verification: Certifies, discover edge cases & operating domains 

Sayan Mitra    University of Illinois, Urbana-Champaign

ሶ𝑥 = 𝑓(𝑥, 𝑢)

Verification in the engineering ecosystem

Public trust in 
products and 
services

Engineers, 
Product 
managers, 
models

System. sort(int 
a[])for sorting an array 
in some programming 
language, e.g. C

Requirement. Output of 
sort(int a[])

is the sorted version of 
the input array a[]

counterexample. A 
particular input array a 
and initialization of sort 

that produces wrong 
output

A mathematical 
proof that 
sort()works for 

all inputs in the 
given model M of C

A model M for execution 
of  programs in C



The Reach of Formal Verification

Formal Verification Covers and connects ideas in CS, control, ML

Turing Awards: Lamport (2014), Clarke, Sifakis & Emerson (2008), Pnueli (1997), Lampson 
(1992), Milner (1991), Hoare (1980), Dijkstra (1972) …

ACM Doctoral Dissertation Award: Chuchu Fan (2020) alumni of this class

Vibrant community: CAV, TACAS, ATVA, PLDI (programming languages), 

 HSCC, EMSoft, ICCPS (hybrid and cyber-physical systems)

 Special tracks in Robotics (ICRA, RSS), automatic control

 Ideas permeating into AI and machine learning (Neural network verification)

Faculty and research positions: Alumni of this course are professors at WashU, Vanderbilt, UNC 
Chapel Hill, MIT, Stoney Brook, and researchers at Waymo, Tesla, Amazon, Toyota, Boeing 

https://awards.acm.org/doctoral-dissertation
https://dblp.org/db/conf/cav/index.html
https://dblp.org/db/conf/tacas/index.html


Course Objectives

• Learn to write verification algorithms and tools

• Understand fundamental limits of creating such tools

• Learn how to create models of of LE-CPS and the trade-offs in 
different modeling paradigms

• Execute a research project in formal verification 



Learning objectives

1. Learn a unified mathematical language for 

modeling state machines combining automata 

(CS) and differential equations (ODEs)

2. Learn fundamental concepts such as invariance, 

reachability, contraction, stability and how they 

cut across automata, ODEs, and ML models

3. Learn powerful algorithms and tools for 

reasoning about invariance, stability, contraction 

4. Jumpstart research

Invariance, safety, induction, 
reachability, liveness, Lyapunov 
theory, ranking functions, dwell 
time, CEGAR, SMT, temporal 
logics, 

discrete and continuous states, 
valuations, equilibria, 
programs, solutions, 
trajectories, executions, 
observables, measurements, 
composition, abstraction

SMT solvers, CVXOPT, theorem 
provers, CROWN, Verse

semester-long project, 
feedback, presentation, 
hardware, software, and data 
resources  



ADMINISTRIVIA

How the course works



Fall 2025 Edition

• https://mitras.ece.illinois.edu/ECE584/ 

• Lectures TR 12:30 – 1:50

• ECEB: 3013

• Textbook

• Homework: 4-5 sets. Analysis and some coding

• Midterm Exam --- in class Oct 21

• Project: Semester long research project, becomes 
basis for publication

https://mitras.ece.illinois.edu/ECE584/
https://mitras.ece.illinois.edu/ECE584/
https://www.amazon.com/gp/product/B097G4NF2D?pf_rd_r=MNT3VZ4P6Q0G864WDV0Q&pf_rd_p=8fe9b1d0-f378-4356-8bb8-cada7525eadd&pd_rd_r=ece02fcb-71b5-4761-b95a-4a3372b5f3f5&pd_rd_w=uKUaY&pd_rd_wg=N1bMh&ref_=pd_gw_unk
https://www.amazon.com/gp/product/B097G4NF2D?pf_rd_r=MNT3VZ4P6Q0G864WDV0Q&pf_rd_p=8fe9b1d0-f378-4356-8bb8-cada7525eadd&pd_rd_r=ece02fcb-71b5-4761-b95a-4a3372b5f3f5&pd_rd_w=uKUaY&pd_rd_wg=N1bMh&ref_=pd_gw_unk
https://wiki.illinois.edu/wiki/display/ECECS584FVECS/Project+ideas+and+resources%3A+Fall+2021
https://wiki.illinois.edu/wiki/display/ECECS584FVECS/Project+ideas+and+resources%3A+Fall+2021


Expectations and grading
Individual Homework (4-5 sets): 40%
• Problems will involve some coding and pencil paper 

proofs

Midterm 15 % 

Project in teams of 2: 40%
• Proposal: 5%
• Midterm presentation: 5%
• Final presentation (EOS): 15% 
• Report (EOS): 15% 
• Code and documentation: 5%

Participation: 5%
• Class participation
• Feedback on projects
• New problem suggestions and solutions

Preparation: Do the readings, review notes, and come 
with questions.

Engagement: Participate actively in discussions and 
project reviews.

Integrity: Collaboration is encouraged, but all 
submitted work must be your own.

Professionalism: Be respectful, give constructive 
feedback, and contribute fairly in group work.

Research mindset: Treat assignments and the project as 
opportunities to explore publishable ideas, not just 
homework.



COURSE PROJECT
• You will work on a semester-long research project building a verification system. Often the projects 

become publishable.

• Good project will require ~6-8 hours/week — higher towards the end of the semester.

• Start early, and get frequent feedback. This week: Read and start here

• Projects can either be individual or be done in a team of 2 people. If you are sure that you want to 
work in a larger team (3 or more people), you can make a case and we can consider.

• Projects will be graded based on
• soundness of claims,

• significance (novelty, impact, harness),

• presentation quality, and

• effort

• Advice
• Choose a high-risk project that if success will make you proud

• Clearly define the problem ASAP

• Get feedback frequently



Course Staff
Prof. Sayan Mitra

CSL 266

Office Hour: 

TA: Chenxi Ji 

CSL 247

Office Hour: 

TA’s role: Grading HWs, exams, explain lecture/HW materials

Provide constructive feedback on project ideas



DISCRETE MODELS

Preliminaries



Outline

– State machines or Automata

– Semantics: executions, reachable states

– Examples

– Invariance

• Reachable state

• Inductive invariance



Models: State machines or Automata
A state machine or an automaton is a discrete-time(step-by-step)  

mathematical model describing the evolution of a system in term 

of its states

Example run: x = 5, x=16, x=8, x=4, 2, 1, 4, 2, 1, 4, 2, 1

Another run: x = 6, x=3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, … 

Another run: x = 7, x=22, x=11, x=34, x=17, x=52, … ?

Do all runs end in the 4,2,1 loop?

“Mathematics is not yet ready for such problems.” --- Paul Erdös 

Example 1:

x: Int = 5 

While True // step

   If x % 2 == 0 then x = x / 2 else x = 3x + 1



Models: State machines or Automata
A state machine or an automaton is a discrete-

time(step-by-step)  mathematical model describing the 

evolution of a system in term of its states

Example run: x = 5, x=16, x=8, x=4, 2, 1, 4, 2, 1, 4, 2, 1

Another run: x = 6, x=3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, … 

Another run: x = 7, x=22, x=11, x=34, x=17, x=52, … ?

Do all runs end in the 4,2,1 loop?
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Paul Erdös 

An automaton 𝒜 is a 4-tuple 〈𝑉, Θ, 𝐴, 𝒟〉 where

• 𝑉 is a set of names of variables; each variable 𝑣 ∈ 𝑉 is 
associated with a type, 𝑡𝑦𝑝𝑒(𝑣)

– A valuation for 𝑉 maps each variable name to its type

– Set of all valuations:𝑣𝑎𝑙 𝑉  defines the state space of 
the automaton 𝒜

– if 𝑣𝑎𝑙 𝑉  is finite then 𝒜 is a finite state automaton

• Θ ⊆ 𝑣𝑎𝑙(𝑉) is the set of initial or start states

• 𝐴 is a set of names of actions

• 𝒟 ⊆ 𝑣𝑎𝑙 𝑉 × 𝐴 × 𝑣𝑎𝑙 𝑉  is the set of transitions

– a transition is a triple (𝑢, 𝑎, 𝑢’) which says “from state 
𝑢, upon performing action 𝑎, the automaton can go 
to state 𝑢’

– We write it as 𝑢 →𝑎 𝑢′

Example 1:

x: Int = 5 

While True // step

   If x % 2 == 0 then x = x / 2 else x = 3x + 1



Collatz Automata
A state machine or an automaton is a discrete-

time(step-by-step)  mathematical model describing the 

evolution of a system in term of its states

Example run: x = 5, x=16, x=8, x=4, 2, 1, 4, 2, 1, 4, 2, 1

Another run: x = 6, x=3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, … 

Another run: x = 7, x=22, x=11, x=34, x=17, x=52, … ?

An automaton 𝒜 is a 4-tuple 〈𝑉, Θ, 𝐴, 𝒟〉 where

• 𝑉 = {𝑥} 

• 𝑡𝑦𝑝𝑒 𝑥 = Int

• A valuation for 𝑉: ⟨𝑥 ↦ 5⟩ we write this as 𝒗

• 𝑣𝑎𝑙 {𝑥}  state space ≡ ℤ+

• Θ = ⟨𝑥 ↦ 5⟩ ⊆ 𝑣𝑎𝑙({𝑥}) start states

• 𝐴 = {𝑠𝑡𝑒𝑝} 

• 𝒟 = 𝑥, 𝑎, 𝑥′  𝑥 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑥′ =
𝑥

2
𝑜𝑟 (

)

𝑥 𝑜𝑑𝑑 𝑎𝑛𝑑 𝑥′ =

3𝑥 + 1 , 𝑎 = 𝑠𝑡𝑒𝑝} transition relation 

– This is a special case transition function 𝒟: 𝐼𝑛𝑡 → 𝐼𝑛𝑡

Collatz:

x: Int = 5 

While True // step

   If x % 2 == 0 then x = x / 2 else x = 3x + 1



Automata, executions, and determinism

An automaton is a tuple 𝒜 = 〈𝑉, 𝛩, 𝐴, 𝒟〉 where
• V variables; a valuation v is a state and the set of all valuations val V  is the state 

space
• 𝛩 ⊆ 𝑣𝑎𝑙(𝑉) is the set of initial or start states
• A is a set of names of actions 
• 𝒟 ⊆ 𝑣𝑎𝑙 𝑉 × 𝐴 × 𝑣𝑎𝑙 𝑉  is the set of transitions

– a transition is a triple (𝒗, 𝑎, 𝒗’) often written as 𝑣 →𝑎 𝑣′

An action a is said to be enabled at state 𝒗 if there exists 𝒗′ such that 𝒗 →𝑎 𝒗′

An execution or a run of 𝒜 is a finite or infinite alternating sequence of states and 
actions 𝑣0, 𝑎1, 𝑣1, 𝑎2, … such that (1) 𝑣0 ∈ 𝛩 and (2) (𝒗𝒊, 𝑎𝑖+1, 𝒗𝒊+𝟏) ∈ 𝒟

𝒜 is deterministic if Θ = 1 and there is at most one next state 𝒗′ from any state 𝒗



Specifications and verification

A specification is an assertion about 
executions of an automaton 

Examples: 

All executions of Collatz (with Θ ≡ ℤ+) 
eventually enter reaches ⟨𝑥 ↦ 1⟩

All executions of Collatz with 𝑥0 ∈ [1,200] 
stays inside 𝑥𝑖 ≤ 10,000 



Example 2: Butterfly effect and the Lorentz Attractor

𝑑𝑥 

𝑑𝑡
=  𝜎(𝑦 − 𝑥)

𝑑𝑦

𝑑𝑡
= 𝑥 𝜌 − 𝑧 − 𝑦

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧 

𝑥′ = 𝑥 + Δ𝑡 𝜎(𝑦 − 𝑥)
𝑦′ = 𝑦 + Δ𝑡 𝑥 𝜌 − 𝑧 − 𝑦
𝑧′ = 𝑧 + Δ𝑡 𝑥𝑦 − 𝛽𝑧 

In 1961, while working on models of atmospheric convection to 
improve weather forecasting, Edward Lorenz made a surprising 
discovery. He reran a computer simulation of ODEs but started it 
from intermediate values rounded to three decimal places instead 
of the full six. 

To his astonishment, the new simulation initially matched the 
previous run but soon diverged completely, producing a different 
weather pattern. This unexpected sensitivity to initial conditions 
led Lorenz to realize that deterministic systems could behave 
unpredictably, laying the foundation for chaos theory.



Lorentz Automaton

𝑉 = {𝑥, 𝑦, 𝑧},  𝑡𝑦𝑝𝑒 𝑥 = 𝑡𝑦𝑝𝑒 𝑦 = 𝑡𝑦𝑝𝑒 𝑧 = ℝ

A valuation for 𝑉: ⟨𝑥 ↦ 5, 𝑦 ↦ 35.6, 𝑧 ↦ −3.5⟩ 

state space 𝑄 = 𝑉𝑎𝑙(𝑉) ≡ ℝ3

𝐴 = {𝑠𝑡𝑒𝑝} 
𝒟Δ𝑡 = 𝒗, 𝑎, 𝒗′  𝒗′. 𝑥 = 𝒗. 𝑥 + Δ𝑡𝜎 𝒗. 𝑦 − 𝒗. 𝑥 , … }

Do all executions converge? Do they stay bounded? 

Do executions starting nearby, stay close? 

Even though this is a deterministic automaton, because of infinite state 
space and sensitivity to initial conditions, these questions are nontrivial

Lorentz:
𝑥′ = 𝑥 + Δ𝑡 𝜎(𝑦 − 𝑥)
𝑦′ = 𝑦 + Δ𝑡 𝑥 𝜌 − 𝑧 − 𝑦
𝑧′ = 𝑧 + Δ𝑡 𝑥𝑦 − 𝛽𝑧 



Assignments

• Read. Modeling computation: Chapter 2 of 
CPSBook, first part of Chapter 7, and section 
on SAT/SMT

• Form team (optional*) and go through 
Project Jumpstart exercise

• Next: Invariance and reachability
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