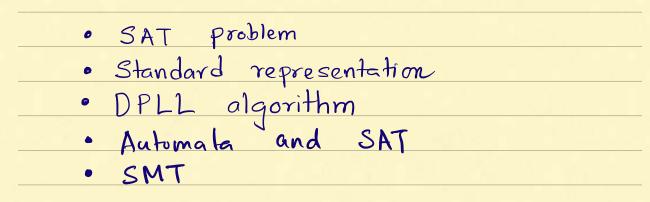
Satisfiability



Def. Given a well-formed formula in propositional logic, determine whether there exists a satisfying Solution (or valuation). Boolean Satisfiability Problem SAT Example : Set of variables type Boolean operators Well-founded formula (informal) is a formula involving the variables and operators "properly" Kecall, a valuation x maps each x; EX to Eo, is A valuation X satisfies & if each z; in a replaced by XTai evaluates to true. We write this as x = x otherwise × does not satisfy &, * # ~ Example .

 $\exists \mathbf{x} \in \mathcal{V}al(\mathbf{X}) : \mathbf{X} \models \alpha?$

- if Yes a is <u>satisfiable</u> else a is <u>Unsatisfiable</u>
- if $\forall x \in val(x) \ x \models \alpha \ then \alpha is valid or a tautology.$

if a is valid then Ta is unsatisfiable.

« and « are tautologically equivalent if they have the same truth tables

 $\forall x \in val(x) : \chi \models \alpha \Leftrightarrow \chi \models \alpha'$

L'and L'are equisatisfiable if & is satisfiable iff q' is also satisfiche

How to solve SAT? 1 · A solver for SAT Can be used to solve any other problem in the NP-Class with only polynomial slow down · Make sense to build SAT Solvers · Modern SAT solvers can solve problems with IOK+ variables and million + Clauses

How do SAT solvers work?

We assume & to be in Conjunctive normal form (CNF)

literals : variable or negation x3 7x3 Clause : disjunction (OR) of literals x, V x2 V 7x3 CNF : a formula Conjunction & Clauses α

X2 appears positively in the first clause hegatively in the second

How to construct CNF? Logic and Circuits $\mathcal{A} = (\chi_{4} \wedge \chi_{1} \wedge \chi_{2}) \vee (\gamma \chi_{3} \wedge \chi_{1} \wedge \chi_{2})$ $(\chi_{4} \wedge (\chi_{1} \wedge \chi_{2})) \vee (\forall \chi_{3} \wedge (\chi_{1} \wedge \chi_{2}))$ L Xe X x2 xy 个

<u>4</u> 23-00-Y2 - ~ \mathfrak{Y}_1 x2 **y**₃ xy Y4 ⇔ 723 $x_1 \wedge x_2 \Leftrightarrow y_1$ $y_1 \land z_3 \Leftrightarrow y_3$ 3) $\overline{4}$ $\alpha' \equiv (1) \land (2)$ \wedge (3) \wedge (4)

Standard representations of CNF • $(7\alpha_1 \vee 7\alpha_2 \vee \alpha_5) \wedge (7\alpha_5 \vee \alpha_1)$ Λ (7 π 5 V π 2) • $(x_1' + x_2' + x_5)(x_5' + x_1)$ $(\chi'_5 + \chi_2)$ (-1 −2 5)(-5 1)(-5 2) DIMACS · SMTLib

GSAT input: Clauses Cover X parameters max flips, max-tries Output : X satisfying x or Ø

for i=1 to max-tries v:= vandom choice from val(x) for j=1 to max flips if v = C return v p:= variable in C s.t. flipping p gives the largest increase in # Satisfied Clauses v = v with assignment to p flipped return ¢

Davis Putnam Logemann Loveland (DPLL) Algorithm 1962 · Transform the given formula & by applying a sequence of Satisfiability preserving rules • if final result has no literals -> Unsatisfiable • if final result has no clauses -> sortisfiable Davis Putnam Algorithm (DP) 1960 Rule 1. Unit propagation Rule 2. Pure literal Rule 3, Resolution Kulel, Unit Pmp if a Clause nas a Single literal $\chi = \dots (\chi_1 \vee \neg p \vee \chi_2) \Lambda (\neg \chi_3 \vee \neg p \vee \chi_1)$ $\mathcal{A}' \equiv \cdots (\mathcal{X}_1 \vee \mathcal{X}_2) \wedge \cdots \wedge (\neg \mathcal{X}_3 \vee \mathcal{X}_1)$ and a' are equisatis fiable.

What is the size f & after resolution? $O(N^2)$ DPLL modifies resolution in DP with DFS Rule3' Lat & be the curent set of Clauses Choose a literal pin & Check Satisfiability & DUEp3 (guess p=1) if SAT then return True else return result of Satisfiability of & U {7 p}

Problem	tautology	dptaut	dplltaut
prime 3	0.00	0.00	0.00
prime 4	0.02	0.06	0.04
prime 9	18.94	2.98	0.51
prime 10	11.40	3.03	0.96
prime 11	28.11	2.98	0.51
prime 16	>1 hour	out of memory	9.15
prime 17	>1 hour	out of memory	3.87
ramsey 3 3 5	0.03	0.06	0.02
ramsey 3 3 6	5.13	8.28	0.31
mk_adder_test 3 2	>>1 hour	6.50	7.34
mk_adder_test 4 2	>>1 hour	22.95	46.86
mk_adder_test 5 2	>>1 hour	44.83	170.98
mk_adder_test 5 3	>>1 hour	38.27	250.16
mk_adder_test 6 3	>>1 hour	out of memory	1186.4
mk_adder_test 7 3	>>1 hour	out of memory	3759.9

From Slides of Clark Barrett's lecture. Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 42/98

Abstract DPLL as an automation

Transitions

Decide MIIF
$$\rightarrow Ml^{d} IIF$$

if *l* is unassigned in M
both *l* and $\neg l$ appear in
Some clauses in F

Backtrack Ml^d N || F, C→ M¬l || F, C if Ml^d N ⊨ ¬C and N Contains no decision literals

M∥F, C → Fail if M = TC and M contains no decision liferals Fail

Example DPLL 0 1 1 V 2 T V 2 2 V 3 3 V 2 1 V 4 . 1 / . -

Automata, Reachability, and SAT. Given an automaton A= (V, O, A, D) and a candidate in variant I [val(v) how to write the invariance check (Thm 7'1) as a satisfiability problem? Example : Automaton Variables To be filled 74:1B χ_{1} : B transitions pre x V 22 Pre 7 (X, D X2) eff 22 := 1 eff X, = 7X, pre Z2 AZ $\chi_{z} := \tau \chi_{z}$ eff x2:=0

