
Verifying cyberphysical systems Fall 2019

Sayan Mitra Extra problems for Chapter 2: Modeling computation

Last updated September 2, 2019

Problem. Bidirectional array. Model the following token-based mutual exclusion algorithm that
works on a bidirectional array. There are N processes {0, . . . , N − 1} in an array. Each process i,
has a single variable s[i] that takes values in the set {0, 1, 2, 3} independent of the size of the array.
The two processes 0 and N − 1 behave differently from the rest, they can take two values each s[0]
can take values {1, 3} and s[N − 1] can take values {0, 2}. Let Nbrs(i) be the set of neighboring
processes for process i.

1. Program for processes, i, i = 0 or i = N − 1:
if ∃ j ∈ Nbrs(i):s[j] = s[i] + 1 mod 4 then s[i] = s[i] + 2 mod 4

2. Program for processes, i, 0 < i,N − 1:
if ∃ j ∈ Nbrs(i):s[j] = s[i] + 1 mod 4 then s[i] = s[i] + 1 mod 4

In this protocol, process i has token iff

∃j ∈ Nbrs(i) : s[j] = s[i] + 1 mod 4.

(a) Write the model of the bidirectional array system withN processes using the language we saw
in class.

(b) Write an execution of the algorithm that starts from a state with a single token. Mark the
process with the token.

(c) Write an execution (of length at least 6) that starts from a state with multiple tokens.

(d) Prove the invariant “system has a single token” using the inductive invariance theorem.

Problem. LCR Leader election. In this problem, you will create a model of a leader election
algorithm in a unidirectional ring [2]. Here is the informal description of the protocol:

Each process sends its identifier to its successor around the ring. When a process receives an
incoming identifier, it compares that identifier to its own. If the incoming identifier is greater than
its own, it keeps passing the identifier; if it is less than its own, it discards the incoming identifier;
if it is equal to its own the process declares itself as the leader.

(a) Write the model of the system with n processes in the ring using the language we saw in class.
To get you started, the set of variables is:

• send : The identifier to send or null,

• status : Takes values in {unknown, leader} to indicate that the leader has been elected or
not.

1



(b) Write an execution of the system in which status of at least one process is eventually set to
leader .

(c) Write two candidate invariants.

Problem 3. Impossibility of election. A symmetric function f : Sk → S has the property that for
all s1, s2 ∈ Sk, if s1 is a permutation of s2 then f(s1) = f(s2). That is, for k = 3, f(〈1, 2, 3〉) =
f(〈2, 3, 1〉) = f(〈3, 1, 2〉), etc.

Consider a synchronous algorithm SymGk running on a graph G with indegree k. That is, each
process Pj reads the states of exactly k other processes. In this algorithm. SymGk, every node
updates its state xi according to some symmetric function f : Sk → S, that is,

x[i] := f(〈x[j] | (j, i) ∈ G)

Show that it is impossible for SymGk to elect a leader if initially every process has the same value
of x[i]. [Hint: State an invariant and prove it by induction on rounds.]

Coding problem. Invariance with Z3. Use the Z3 SMT solver to encode and check that for the
Dijkstra’s token ring mutual exclusion algorithm (DijkstraTR of Chapter 2) the predicate φlegal is
an inductive invariant.

First install z3 in your computer. This is a very quick process. On the MacOS pip install
z3-solver does it in less than a minute. For Windows and Linux you can get it from:
https://github.com/Z3Prover/z3. There is a lot of help available online for installation related
issues.

Next, download the file DijkstraTRind.py given for this homework and read it carefully. There
are several function given and you have to complete several other functions. The documentation
given with the program, the lecture slides, and the discussions in the book chapter 2 and 7 should
be adequate for you to complete this problem. Here are some additional notes.

• has token(x list, j): Generates a Z3 Boolean expression (predicate) that represents
whether process P j holds the token. Here x list is a list of Z3 variables, for example,
[x[0], x[1], x[2], x[3]], and j is the index of process P j.

• legal config(x list): Generates a Z3 Boolean expression that represents whether the
system is in a legal configuration. This is the implementation of φlegal . This function is given
to and you do not have to change it.

• transition relation(old x list, new x list): Generates a Z3 Boolean expression
representing transition from old x list to new x list.

• prove(conjecture): Checks whether the Boolean predicate conjecture is valid using
the Z3 solver to check the unsatisfiability of the negation of conjecture. You do not have
to change this.

Run your program with python DijkstraTRind.py. If the functions are written correctly, then
validity of the base case and the induction case imply (by the induction invariance Theorem) that
legal config is indeed an invariant.

2

https://github.com/Z3Prover/z3


Problem. Traffic light. Model a traffic light which follows these rules. It can display three colors:
green, amber, and red. It cycles through these colors in this order, pausing some number of ticks
in each color. There is a button that pedestrians can press to cross the road. If the color is green
when the button is pressed then within 5 ticks it becomes amber. Otherwise, pressing the button
does not change the behavior of the light.

Coding problem. Invariant verification. Verify inductive invariants of other distributed algo-
rithms, such as the bidirectional array in Problem 1, following the pattern of Problem 4. Several
interesting examples appear in Chapter 17 of [1].

References

[1] Sukumar Ghosh. Distributed Systems: An Algorithmic Approach. Chapman & Hall/CRC, 2nd
edition, 2014.

[2] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.

3


